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e I'll give a broad strokes background of (things around)
microstates/microstates free entropy dimension.

@ Roughly speaking, the idea is to understand a tracial vNa by
understanding “how many" finite-dimensional approximations
it has.

@ This neatly connects to random matrices, and allows one to
bring tools from the finite-dimensional world
(finite-dimensional analysis, probability, measure theory) that
are usually unavailable in the infinite-dimensional setting.
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Review: Commutative Laws

Let X be an essentially bounded R-valued random variable. lts
law, or distribution, is the probability measure ux on
[=[[Xlloe, [I X1[oc] defined by

E(F(X) = [ £dux

for all Borel f: [—[|X]|c0, || X]|oo] = C.

Exercise: using Stone-Weierstrass and Riesz representation, if v is
any measure so that

E(p(X)) = [ pdv

for all polynomials p: [—|| X]|co, || X||cc] = C, then v = pux.

Can do same for a tuple X = (Xy,---, X;), just replace
polynomials of one variable with polynomials of several variables.
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Concrete Noncommutative Laws

Fix r € N. We let C(Ty,---, T,) be the algebra of NC polynomials
in r-variables. Give C(Ty,---, T,) the unique *-structure which
makes T; self-adjoint.

Let (M, 7) be a tracial von Neumann algebra and x € M/ ,. The
law of x is the linear function ¢, : C(Ty,---, T,) — C defined by

If r =1, and x is self-adjoint, then

(P) = / P duy, px = the spectral measure of x wrt 7
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Abstract Noncommutative Laws

Fix r € N, and R € [0,00). Let Xg , be the space of all linear
¢:C(T1,---,T,) — C so that

@ {(P*P)>0forall Pe C(Ty,---,T,),

e /(PQ)=(¢(QP) forall P,Q € C(Ty,---,T,),

e /(1)=1,

o w(lesz 7-Jk)‘ < R¥ for all ji,--+ ,jk € {17"' vr}'
Exercise using GNS: ¢ € X g, if and only if there is a tracial von

Neumann algebra (M, 7) and an x € M}, so that ¢ = /,.
Moreover, if £ = £, then ||x||cc < R, where

Ixlloo = max x|l
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Weak* and microstates

We can endow ¥ , with the weak*-topology. So /, € Xg ,
converges to ¢ in g, if and only if £,(P) — ¢(P) for every
P e (C<T1,'-- , Tr>.

Given R € [0,00), a tracial von Neumann algebra (M, 7) and
x € M, with ||x|lcc < R, say that x has microstates if

k*

e € [ J{la: A€ M(C)z,, [|Alls < R}
k

Equivalently, there is a sequence A, € My(,)(C)¢ , with
|Anllco < R and £a, — Ux.

Exercise: x has microstates if and only if W*(x) admits a
trace-preserving embedding into an ultraproduct of matrices.
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Random matrices

Let X(K) = (ka), S (k)) € M(C); . be a random tuple such
that:

° (X,(k))le is an independent family,
@ for each 1 </ < r, k € N the random variables

(XY, U V2 Re(X ) hcicjen U AV2Im(X) b1z

are iid, Gaussian,with mean zero and variance %

This is called the Gaussian unitary ensemble, denoted GUE(k, r).

Define the semicircular distribution to be the probability measure
lse on [—2,2] with

1
dise = Z\/4 — x21[_ ) dx.
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Voiculescu's asymptotic freeness theorem

Theorem (Voiculescu's asymptotic freeness theorem '98)

Fix r € N, and let X) be the Gaussian unitary ensemble

GUE(k,r). Let s = (s1, - ,sk) be a tuple of free independent NC
variables with Hsj = Hsc for all j. Then, almost surely,

L) —k—oo Us-
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Microstates Free Entropy Dimension

Motivated by his asymptotic freeness theorem, for a tuple x € M{
Voiculescu defined the microstates free entropy dimension.

One has do(x) > 1 if W*(x) is diffuse (has no nonzero minimal
projections), and dp(x) > 1 has lots of structural implications for
W*(x). do(x) = r if x is an r-tuple of free variables.

A priori, dp(x) is not an invariant of W*(x) : i.e. it is possible there
exists y € W*(x)L, with do(x) # do(y) and W*(y) = W*(x).
Implicit in work of Jung '07 and explicitly due to H. '18 is the
notion of 1-bounded entropy, denoted h(M), which is an invariant.

In the spirit of talks on the assembly map, UCT,.. | will not give
the definition.

9/19



Axioms

All von Neumann algebras below are diffuse.
o h(M) € {—o0} U0, +00] , and h(M) > 0 iff M has
microstates,
h(M) = 0 if M is injective,
h(M) = oo if M = W*(x) and do(x) > 1, e.g. if M = L(F,),
h(N1 VvV Np) < h(Ni) + h(Ny) if Np N Na is diffuse,
h(W*(Nm(N))) < h(N) if N < M, where

Nu(N) ={ueU(M): uNu* = N},

this last item is mildly false. Properly speaking one needs to replace
the “1-bounded entropy of W*(Nu(N)) in the presence of M".
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Sample application

Say that N < M is regular if W*(Nu(N)) = L(F,). f N< M is
regular, then h(M) < h(N). So

Theorem (Voiculescu '96)

L(FF,) does not have a diffuse, regular, injective subalgebra.

E.g. L(IF,) 2 L*°(X) x G. These results were later recovered by
Ozawa-Popa using Popa’s deformation /rigidity theory.
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Sample Application Il

Theorem (Popa '83, Ge '96)

L(F,) is prime. Le. L(F,) 22 Mi®&M, with M; diffuse. In fact,
L(F,) 22 My V My with M; diffuse and [My, M>] = {0}.

e Suppose M = My vV M, with M; diffuse and [My, Mp] = {0}.
o Fix A; < M; diffuse, abelian. Set N; = W*(Num(A))).

So h(N;) < 0.

o Ny DAIVMy, Np D MpV Ay So NpN Ny O ApV A; is diffuse.
h(M) = h(Ny V Na) < h(Ny) + h(N») < 0.

Implicitly used the following exercise: if (M, T) is tracial and
N < M is diffuse, then M is diffuse.
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Other applications

Theorem (Popa '83, Houdayer '15, H-Jekel-Nelson-Sinclair)

L(Z) = L(Z)*1 < L(Z) * L(IF;_1) has the absorbing amenability
property. lLe. if N < L(F,) is injective and N N L(Z) is diffuse,
then N < L(Z).

Proof uses: 1-bounded entropy, exponential concentration of
measure, external averaging property, Voiculescu's asymptotic
freeness theorem.
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Other applications: weird normalizers

Given N < M with N diffuse, define (Pimnser-Popa '86,
Izumi-Longo-Popa '98, Popa '99):
e gNum(N) = set of x € M so that there are aj, -+ ,ax € M
with
xN C Y Naj, and Nx C ) a;N.
J j

o g'Nu(N) = set of x € M so that there are a1, -+ ,ax € M
with
xN C Y Naj.
J

o Ny (N) = set of u € U(M) so that uNu* N N is diffuse.
(Defined in Popa '06 , loana-Peterson-Popa '08 ,Galatan-Popa
'17)
For each of this, if @=the vNa generated by the appropriate
normalizer, then h(Q) < h(N) (by H.).



The weirdest normalizer

Let A be a x-algebra. Say two *-reps 7, p of A are disjoint if there
are no bounded, A-equivariant, linear T: H, — H,,.

Example: For X compact, metrizable, and p € Prob(X), consider
7, C(X) — B(L?(X, p)) by multiplication operators.

Exercise: m,,m, are disjoint if and only if L v.
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The weirdest normalizer, |l

Exercise: 7, p are disjoint if and only if there is a sequence
(an)n € A with

o max([|m(an)ll [lp(an)ll) < 1,

e 7w(a,) — 1 SOT,

e p(a,) — 0 SOT.
Hint: use the double commutant theorem and Kaplansky's density
theorem.
For N < M, and a € M, let L?(NaN) be the closed linear span in
L2(M,T) of {xay : x,y € N}.
Let Hs(N < M)= all a € M so that L2(NaN) is disjoint from
L2(N®N) as an N-N bimodule.

This contains g* Ny (N), Ny (N).
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One last application

h(W*(Hs(N < M))) < h(N).

Uses in a crucial way this previous characterization of disjointness.

Has new applications to nonisomorphism results on Free
Araki-Woods factors (Shlyakhtenko '04), Bogoliubov cross
products (following work of Houdayer-Shlyakhtenko '11), as well as
new indecomposability results on free group factors currently not
available by other methods. This also solves a conjecture of
Galatan-Popa '17.
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Suggestions for further reading:

@ “Free random variables. A noncommutative probability
approach to free products with applications to random
matrices, operator algebras and harmonic analysis on free
groups." CRM Monograph Series, Voiculescu-Dykema- Nica,

@ "Free entropy", arXiv:0103168, Voiculescu, Bulletin of the
London Mathematical Society,

@ “Strongly 1-bounded von Neumann algebras", Geometric and
Functional Analysis, Jung,

@ "A Random matrix approach to absorption in free products",
to appear in International Mathematics Research Notices,
Jekel-H-Nelson-Sinclair,

@ “1-bounded entropy and regularity problems in von Neumann
algebras", International Mathematics Research Notices, H.
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Thanks for paying attention!
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