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Overview

I’ll give a broad strokes background of (things around)
microstates/microstates free entropy dimension.
Roughly speaking, the idea is to understand a tracial vNa by
understanding “how many" finite-dimensional approximations
it has.
This neatly connects to random matrices, and allows one to
bring tools from the finite-dimensional world
(finite-dimensional analysis, probability, measure theory) that
are usually unavailable in the infinite-dimensional setting.
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Review: Commutative Laws

Let X be an essentially bounded R-valued random variable. Its
law, or distribution, is the probability measure µX on
[−‖X‖∞, ‖X‖∞] defined by

E(f (X )) =
∫

f dµX

for all Borel f : [−‖X‖∞, ‖X‖∞]→ C.

Exercise: using Stone-Weierstrass and Riesz representation, if ν is
any measure so that

E(p(X )) =
∫

p dν

for all polynomials p : [−‖X‖∞, ‖X‖∞]→ C, then ν = µX .

Can do same for a tuple X = (X1, · · · ,Xr ), just replace
polynomials of one variable with polynomials of several variables.
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Concrete Noncommutative Laws

Fix r ∈ N. We let C〈T1, · · · ,Tr 〉 be the algebra of NC polynomials
in r -variables. Give C〈T1, · · · ,Tr 〉 the unique ∗-structure which
makes Tj self-adjoint.

Let (M, τ) be a tracial von Neumann algebra and x ∈ Mr
s.a.. The

law of x is the linear function `x : C〈T1, · · · ,Tr 〉 → C defined by

`x (P) = τ(P(x)).

If r = 1, and x is self-adjoint, then

`x (P) =
∫

P dµx , µx = the spectral measure of x wrt τ
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Abstract Noncommutative Laws

Fix r ∈ N, and R ∈ [0,∞). Let ΣR,r be the space of all linear
` : C〈T1, · · · ,Tr 〉 → C so that

`(P∗P) ≥ 0 for all P ∈ C〈T1, · · · ,Tr 〉,
`(PQ) = `(QP) for all P,Q ∈ C〈T1, · · · ,Tr 〉,
`(1) = 1,
|`(Tj1Tj2 · · ·Tjk )| ≤ Rk for all j1, · · · , jk ∈ {1, · · · , r}.

Exercise using GNS: ` ∈ ΣR,r if and only if there is a tracial von
Neumann algebra (M, τ) and an x ∈ Mr

s.a. so that ` = `x .
Moreover, if ` = `x then ‖x‖∞ ≤ R, where

‖x‖∞ = max
1≤j≤r

‖xj‖.

5 / 19



Weak∗ and microstates

We can endow ΣR,r with the weak∗-topology. So `n ∈ ΣR,r
converges to ` in ΣR,r if and only if `n(P)→ `(P) for every
P ∈ C〈T1, · · · ,Tr 〉.

Given R ∈ [0,∞), a tracial von Neumann algebra (M, τ) and
x ∈ Mr

s.a. with ‖x‖∞ ≤ R, say that x has microstates if

`x ∈
⋃
k
{`A : A ∈ Mk(C)r

s.a., ‖A‖∞ ≤ R}
wk∗

.

Equivalently, there is a sequence An ∈ Mk(n)(C)r
s.a. with

‖An‖∞ ≤ R and `An → `x .

Exercise: x has microstates if and only if W ∗(x) admits a
trace-preserving embedding into an ultraproduct of matrices.
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Random matrices

Let X (k) = (X (k)
1 , · · · ,X (k)

r ) ∈ Mk(C)r
s.a. be a random tuple such

that:
(X (k)

l )r
l=1 is an independent family,

for each 1 ≤ l ≤ r , k ∈ N the random variables

{(X (k)
l ,ii }

k
i=1 ∪ {

√
2Re(X (k)

l ,ij )}1≤i<j≤k ∪ {
√
2 Im(X (k)

l ,ij )}1≤i<j≤k

are iid, Gaussian,with mean zero and variance 1
k .

This is called the Gaussian unitary ensemble, denoted GUE (k, r).

Define the semicircular distribution to be the probability measure
µsc on [−2, 2] with

dµsc = 1
2π

√
4− x21[−2,2] dx .
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Voiculescu’s asymptotic freeness theorem

Theorem (Voiculescu’s asymptotic freeness theorem ’98)

Fix r ∈ N, and let X (k) be the Gaussian unitary ensemble
GUE (k, r). Let s = (s1, · · · , sk) be a tuple of free independent NC
variables with µsj = µsc for all j . Then, almost surely,

`X (k) →k→∞ `s .
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Microstates Free Entropy Dimension

Motivated by his asymptotic freeness theorem, for a tuple x ∈ Mr
s.a.

Voiculescu defined the microstates free entropy dimension.

One has δ0(x) ≥ 1 if W ∗(x) is diffuse (has no nonzero minimal
projections), and δ0(x) > 1 has lots of structural implications for
W ∗(x). δ0(x) = r if x is an r -tuple of free variables.

A priori, δ0(x) is not an invariant of W ∗(x) : i.e. it is possible there
exists y ∈W ∗(x)l

s.a. with δ0(x) 6= δ0(y) and W ∗(y) = W ∗(x).

Implicit in work of Jung ’07 and explicitly due to H. ’18 is the
notion of 1-bounded entropy, denoted h(M), which is an invariant.

In the spirit of talks on the assembly map, UCT,.. I will not give
the definition.
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Axioms

All von Neumann algebras below are diffuse.
h(M) ∈ {−∞} ∪ [0,+∞] , and h(M) ≥ 0 iff M has
microstates,
h(M) = 0 if M is injective,
h(M) =∞ if M = W ∗(x) and δ0(x) > 1, e.g. if M ∼= L(Fr ),
h(N1 ∨ N2) ≤ h(N1) + h(N2) if N1 ∩ N2 is diffuse,
h(W ∗(NM(N))) ≤ h(N) if N ≤ M, where

NM(N) = {u ∈ U(M) : uNu∗ = N},

this last item is mildly false. Properly speaking one needs to replace
the “1-bounded entropy of W ∗(NM(N)) in the presence of M".
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Sample application

Say that N ≤ M is regular if W ∗(NM(N)) = L(Fr ). If N ≤ M is
regular, then h(M) ≤ h(N). So

Theorem (Voiculescu ’96)
L(Fr ) does not have a diffuse, regular, injective subalgebra.

E.g. L(Fr ) � L∞(X )o G . These results were later recovered by
Ozawa-Popa using Popa’s deformation/rigidity theory.
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Sample Application II

Theorem (Popa ’83, Ge ’96)
L(Fr ) is prime. I.e. L(Fr ) � M1⊗M2 with Mj diffuse. In fact,
L(Fr ) � M1 ∨M2 with Mj diffuse and [M1,M2] = {0}.

Suppose M = M1 ∨M2 with Mj diffuse and [M1,M2] = {0}.
Fix Aj ≤ Mj diffuse, abelian. Set Nj = W ∗(NM(Aj)).
So h(Nj) ≤ 0.
N1 ⊇ A1∨M2, N2 ⊇ M1∨A2. So N1∩N2 ⊇ A1∨A2 is diffuse.
h(M) = h(N1 ∨ N2) ≤ h(N1) + h(N2) ≤ 0.

Implicitly used the following exercise: if (M, τ) is tracial and
N ≤ M is diffuse, then M is diffuse.
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Other applications

Theorem (Popa ’83, Houdayer ’15, H-Jekel-Nelson-Sinclair)
L(Z) = L(Z) ∗ 1 ≤ L(Z) ∗ L(Fr−1) has the absorbing amenability
property. I.e. if N ≤ L(Fr ) is injective and N ∩ L(Z) is diffuse,
then N ≤ L(Z).

Proof uses: 1-bounded entropy, exponential concentration of
measure, external averaging property, Voiculescu’s asymptotic
freeness theorem.
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Other applications: weird normalizers
Given N ≤ M with N diffuse, define (Pimnser-Popa ’86,
Izumi-Longo-Popa ’98, Popa ’99):

qNM(N) = set of x ∈ M so that there are a1, · · · , ak ∈ M
with

xN ⊆
∑

j
Naj , and Nx ⊆

∑
j
ajN.

q1NM(N) = set of x ∈ M so that there are a1, · · · , ak ∈ M
with

xN ⊆
∑

j
Naj .

Nwq
M (N) = set of u ∈ U(M) so that uNu∗ ∩ N is diffuse.

(Defined in Popa ’06 , Ioana-Peterson-Popa ’08 ,Galaţan-Popa
’17)

For each of this, if Q=the vNa generated by the appropriate
normalizer, then h(Q) ≤ h(N) (by H.).
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The weirdest normalizer

Let A be a ∗-algebra. Say two ∗-reps π, ρ of A are disjoint if there
are no bounded, A-equivariant, linear T : Hπ → Hρ.

Example: For X compact, metrizable, and µ ∈ Prob(X ), consider
πµ : C(X )→ B(L2(X , µ)) by multiplication operators.

Exercise: πµ,πν are disjoint if and only if µ ⊥ ν.
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The weirdest normalizer, II

Exercise: π, ρ are disjoint if and only if there is a sequence
(an)n ∈ A with

max(‖π(an)‖, ‖ρ(an)‖) ≤ 1,
π(an)→ 1 SOT,
ρ(an)→ 0 SOT.

Hint: use the double commutant theorem and Kaplansky’s density
theorem.

For N ≤ M, and a ∈ M, let L2(NaN) be the closed linear span in
L2(M, τ) of {xay : x , y ∈ N}.

Let Hs(N ≤ M)= all a ∈ M so that L2(NaN) is disjoint from
L2(N⊗N) as an N-N bimodule.

This contains q1NM(N), Nwq
M (N).
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One last application

Theorem (H.)
h(W ∗(Hs(N ≤ M))) ≤ h(N).

Uses in a crucial way this previous characterization of disjointness.

Has new applications to nonisomorphism results on Free
Araki-Woods factors (Shlyakhtenko ’04), Bogoliubov cross
products (following work of Houdayer-Shlyakhtenko ’11), as well as
new indecomposability results on free group factors currently not
available by other methods. This also solves a conjecture of
Galaţan-Popa ’17.

17 / 19



Suggestions for further reading:
“Free random variables. A noncommutative probability
approach to free products with applications to random
matrices, operator algebras and harmonic analysis on free
groups." CRM Monograph Series, Voiculescu-Dykema- Nica,
“Free entropy", arXiv:0103168, Voiculescu, Bulletin of the
London Mathematical Society,
“Strongly 1-bounded von Neumann algebras", Geometric and
Functional Analysis, Jung,
“A Random matrix approach to absorption in free products",
to appear in International Mathematics Research Notices,
Jekel-H-Nelson-Sinclair,
“1-bounded entropy and regularity problems in von Neumann
algebras", International Mathematics Research Notices, H.
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Thanks for paying attention!
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