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By modifying the tracial techniques of Guionnet and Shlyakhtenko in [GS14] we produce free
monotone transport in the context of a finitely generated free Araki-Woods factor, which can
be considered a non-tracial analogue of the free group factors. We solve a free analogue of
the Monge-Ampere equation to produce a criterion for when an N-tuple of non-commutative
random variables generate a free Araki-Woods factor. The criterion, that the joint law
satisfies a certain non-commutative differential equation involving a canonical potential, is
precisely the tracial criterion established in [GS14] modulo modifications to the differential
operators and potential that are completely natural in light of the structure of the free Araki-
Woods factor. We provide two applications of this result. The first is that for small |¢|, the
g-deformed free Araki-Woods algebras are isomorphic to the free Araki-Woods factor with
the same number of generators and orthogonal representation of R. This is obtained using
similar estimates to some found in [Dab14], which were used to prove the tracial analogue
in [GS14] that the ¢-deformed free group factors are isomorphic to the free group factor for
small |g|. The second application is to finite depth subfactor planar algebras, where it is
shown that the transport machinery can be expressed diagrammatically via planar tangles.

From this one obtains a criterion for when towers of von Neumann algebras are isomorphic.
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CHAPTER 1

Introduction

In classical probability, in the context of a probability space (€2, F,P) a random variable is

a measurable function X : 2 — R and the moments of a random variable are the quantities
B(X") = / X(w)"dPw) 0 >0,
Q

which capture a great deal of information about the random variable. A random variable X
is often studied via its law, which is a measure px on R that completely characterizes X. In

particular,
Pla < X <b) = pux(la,b]) V—oo<a<b< oo,
and the law describes the moments of X:
E(X") = /}Rt” dpx(t) Vn > 0.

When considering several random variables X1,..., X,,: 2 — R, their joint law is a measure

H(Xy,..,.x,) on R™ satisfying
IED(X@ € [CLi, bl] 1€ {1, c.. ,Tl}) = /L(Xl’_“’Xn)([CI/l, bl] Xoeee X [CLn, bn]),
and for any polynomial p € C[ty,...,t,]

/np(Xl(wl), e ,Xn(wn)) dIP’(wl) te dIP(wn) = /n p(th e ,tn)dﬂ(xl 7777 Xn)(tla c. ,tn).

In free probability (or non-commutative probability), the context is usually a unital
algebra A and a positive linear functional ¢: A — C satisfying ¢(1) = 1. The elements

a € A are thought of as non-commutative random variables, and evaluation in ¢ corresponds



to integration against dP in classical probability in the sense that the moments of a are given
by ¢(a™), n > 0. In fact, if a = a* is self-adjoint then there exists a measure y, on R which

describes the moments of a:

p(a") = / " dpig(t) Vn > 0.
R
Thus the measure p, is thought of as the law of a.

However, if a is not self-adjoint its moments are no longer necessarily described by a
measure. In this case the law of a general non-commutative random variable refers to the
collection of its moments {¢(a™)}n>0. More precisely, it is a linear functional ¢, on complex
polynomials on an abstract indeterminate ¢. For p € C[t], if we write p(a) for the polynomial

evaluated at t = a then ¢, is defined by
¢a(p) == d(p(a))  Vp € Cli].

More generally, the joint law of an n-tuple of non-commutative random variables (a4, . .., a,)
in A" is a linear functional ¢,  4,) on non-commutative polynomials in abstract non-
commutating indeterminates ti,...,t,. For p € C(ty,...,t,), if we write p(ay,...,a,) for

) is defined by

the polynomial evaluated at ¢; = ay,...,t, = a, then ¢@, . .

¢(a1 ,,,,, an)(p> :gb(p(al,...,an)) pEC<t1,...,tn>.

It is often the case that the x-algebra is either a C'*-algebra or a von Neumann algebra, in
which case (A, ¢) has additional structure. For example, if A = M is a II; factor, then ¢ is
usually taken to be the unique tracial state 7 on M. In this work, however, we shall consider

non-tracial von Neumann algebras equipped with a faithful, normal, non-tracial state.

Transport, in classical probability, refers to a map T': €21 — )5 between two probability

spaces (£, Fi, P;), i € {1,2}, such that
]P)I(T_I(S)) :]PQ(S) VSE.FQ;
that is, T,IP; = P,. In particular, T" induces a measure preserving map via precomposition:

LOO(Q27P2) > f = f ol € LOO(QbPl)‘



Moreover, if X;,..., X, are random variables on )y with joint law px, . x,), then X; o

-----

T,..., X, oT are random variables on 2; with the same joint law. In this case we describe

T as transport from (X1, X0) YO [(xi0T,... X 0T)-

Free transport is the analogue of this latter notion. Let (M, #) and (N,v) be two von
Neumann algebra probability spaces with faithful normal states, and let X := (X,..., X,,) €
M" and Z := (Zy,...,Z,) € N™ be two n-tuples of non-commutative random variables
with joint laws 6 and 1z, respectively. Then transport from 0x to ¢ is an n-tuple Y =

(Y1,...,Y,) € W*(Xy,...,X,,)" whose joint law with with respect 0, say fy, is the same as
Yz

Oy (p) = vz (p) Vp e Cty,... t,).

In particular, the densely defined map
W*(Zy, ..., Zn) 2 p(Zhy..oy Zn) —p(Y1,...,Y,) e WH(Xy,..., X,) peC(ty,....tn),

extends to a state-preserving embedding W*(Z1,...,Z,) — W*(Xq,..., X,).

Transport maps are abundant in classical probability because of Brenier’s monotone
transport theorem [Bre91]: if the joint law of classical random variables X7, ..., X,, is the

standard Gaussian distribution on R":

dpx,,... ) 1 L5~
PO X) () = —eexp |~ Y £
dmn (17 ) ) (QW)neXp 2 f= j

(here m,, is the Lebesgue measure on R™), then there exists transport from p(x, ... x,) to
any other joint law fi(z, .. z,) satisfying some technical conditions (Lebesgue absolutely con-
tinuous, finite second moment, etc.). Moreover, the transport map 7' can be taken to be
monotone: T = VG for some convex function GG. In free probability, transport is much

harder to come by.

In [GS14], by solving a free analogue of the Monge-Ampére equation, Guionnet and
Shlyakhtenko obtained transport from the joint law of free semi-circular random variables

Xi,..., X, € M, in a tracial von Neumann algebra (M, 7) to certain perturbations of this



joint law, which we will discuss below. A semi-circular random variable X € M is an element

whose distribution with respect to 7, 7x, satisfies

dTX 1
ZX ) =y (t)— V4 — 22,
o () = X[=2,2)( )271'

Free semi-circular variables are the non-commutative analogue of independent Gaussian ran-
dom variables, insomuch as Voiculescu’s free central limit theorem (cf. [Voi91]) is precisely
the classical central limit theorem with independence and Gaussian random variables re-
placed by free independence and semi-circular random variables, respectively. Hence this
result of Guionnet and Shlyakhtenko can be viewed as a non-commutative analogue of
Brenier’s monotone transport theorem. Furthermore, if sufficient control on the transport
variables is maintained then the state-preserving embedding guaranteed by free transport
is in fact a state-preserving s-isomorphism. Consequently, this result provided criterion
for when an n-tuple of non-commutative random variables generate the free group factor
LF, =W*(Xy,...,X,).

The non-commutative joint laws to which Guionnet and Shlyakhtenko obtained transport
to were perturbations of 7(x, . x,) in the following sense. The trace 7 satisfies a “free Gibbs

state” condition with respect to a “Gaussian potential” Vy = %ZX JQ
T(2(Vy) - P)=1@7%(_7P) PeC(Xy,..., X",

where 2 and _# are non-commutative differential operators (cf. subsection 2.1.4). Sup-
pose Zy, ..., Z, are self-adjoint elements from another tracial von Neumann algebra (M ,7)
whose joint law satisfies this free Gibbs state condition for some other potential V &
W*(Zy,...,Zy,). Guionnet and Shlyakhtenko showed in [GS14] that provided V' is a con-
vergent power series in Zi,..., 7, which is close in some Banach norm (c¢f. subsection
2.1.3) to V; (when considering both as formal power series) then transport from 7(x, . x,)
to T(z,,...z,) exists. Moreover, by requiring V' to be closer to V; if necessary, it follows that
WH(Xy,..., X)) 2WNZy,...,Z,).

In the commutative case (i.e. n = 1), the free Gibbs state condition amounts to saying

that if 7 is the semi-circle law (2() = x[—29(t)5=v4 — 2) and V() = 32 + W(t) for W



analytic on a disk of radius R and small | - ||c-norm then

[ = [ [ L= a0

for all f which are analytic on the disk of radius R. In general, a measure satisfying this

equation is called a Gibbs state with potential V.

Given a potential V' close to V; and starting with the non-commutative free Gibbs state
condition, Guionnet and Shlyakhtenko produced an equivalent condition which is amenable
to a fixed point argument. Using this latter condition they show the existence of Y7,...,Y,
power series in the X7i,..., X, whose joint law with respect to 7 satisfies the free Gibbs
state condition with potential V. Then a result of Guionnet and Maurel-Segala in [GMO06]
implies that this condition is uniquely satisfied by a joint law (again provided V and Vj
are sufficiently close). Hence Yi,...,Y, serve as transport variables for any other n-tuple

(Zy,...,Z,) whose joint law satisfies the free Gibbs condition with potential V.

In Chapter 2 we adapt the transport result of Guionnet and Shlyakhtenko to the context
of a von Neumann algebra M with a (not necessarily tracial) state ¢ on M. The random
variables X1, ..., Xy are no longer assumed to be free; instead their joint law is assumed to be
a free quasi-free state and they generate the free Araki-Woods factor I'(Hg, U;)” (cf. [Sh197]).
While the state is no longer tracial, in this case there at least exists a positive matrix

A € My(C) such that

O(X;Xk) = (Xk Z[A]j‘X‘> .

Really, A here is encoding the action of the modular operator A, arising from the Tomita-

Takesaki theory for . The Gaussian potential Vj is replaced by

n

1 1+ A
Vor=2 ) {—} X X;.

jk=1 2 Jk
Using the same strategy as in [GS14] and making non-tracial adaptations along the way, we
construct for potentials V' close to V{ transport variables Y7, ..., Yy for any other joint law
which is the free Gibbs state with potential V. This produces a criterion for when an N-tuple

of non-commutative random variables generate the free Araki-Woods factor I'(Hg, U;)”.



In Chapter 3 we consider our first application of non-tracial free transport. Hiai devel-
oped in [Hia03] a generalization of Shlyakhtenko’s algebras I'(Hg, U;) from [Shl97], called
g-deformed Araki-Woods algebras. Letting A be the generator of the one-parameter fam-
ily of unitary operators U; = A" t € R, Hiai was able to show the von Neumann alge-
bras I'y(Hg, U;)" are factors and produced a type classification, but only in the case that
A has either infinitely many mutually orthogonal eigenvectors or none at all. In partic-
ular, when the Hilbert space Hg is finite dimensional the questions of factoriality and
type classification remained unanswered. An application of our result in Section 3 yields
Ly(Hgr, U)" = I'(Hg, Up)" for small |g|, and hence we are able to settle these questions using

Theorem 6.1 in [Shl97].

In Chapter 4 we consider our second application of non-tracial free transport. Despite the
relatively innocuous definition of a subfactor, Jones showed in [Jon83], [Jon99], and [Jon00]
that there is in fact an incredibly rich structure underlying the inclusion of one II; factor in
another. Suppose 15 € A C B is an inclusion of II; factors with trace Trg on B and trace
Tra = Trp |4 on A. Letting e4 be the orthogonal projection of L*(B,Trg) onto L?(A, Tra),
we can consider the von Neumann algebra (B, es) C B(L?*(B,Trg)) generated by B and e4.
If the index of A inside B

[B: A] := dimy L*(B, Trp)

is finite, then (B,ey) is also a II; factor with trace Tr(p.e,) that restricts to Trp on B.
Moreover, we have [(B,ea) : B] = [B: A]. The von Neumann algebra (B, e,) is called the
basic construction for A and B. Clearly this process may be iterated and doing so yields the

Jones tower:
Ao C Al Cey AQ Ce, A3 Ceg * -

where Ag = A, Ay = B, and e; = e4. The standard invariant of A C B is then the lattice of

higher relative commutants:

U U
AAA C ANAsC-.



By studying A-lattices, Popa found necessary and sufficient conditions for when such lattices
are the standard invariant of a II;-subfactor A C B, and for each such lattice provided
a construction of a canonical subfactor whose standard invariant recovered the lattice (cf.

[Pop93], [Pop95], and [Pop02]).

Collecting these relative commutants as P := {P,, 1 }n>0, where for each n > 0

Pos = A\ N A,

Pn,f = All N An+17

defines a subfactor planar algebra. More generally, a planar algebra is a collection of graded
vector spaces { P, 4 }n>0 which admits an action by planar tangles: diagrams which encode
multilinear maps. A subfactor planar algebra is a planar algebra which satisfies some addi-

tional analytic properties.

In [GJS10] Guionnet, Jones, and Shlyakhtenko use free probabilistic methods to construct
a subfactor with P as its standard invariant, and hence is an alternative approach to Popa’s
earlier result. Given a subfactor planar algebra P, for each & > 0 one can turn Gr} P =
@n>kPn + into a x-algebra with a trace T'ry 1 defined by a particular pairing with Temperley-
Lieb diagrams. Then each Gr} P embeds into the bounded operators on a Hilbert space and
generates a II; factor My . Moreover, one can define inclusion maps iﬁ’l: M1y — My +
so that the standard invariant associated to the subfactor inclusion z'],:’l(Mk,l,Jr) C My +
(for any & > 1) recovers P. The embedding relies on the fact that a subfactor planar
algebra P always embeds into the planar algebra of a bipartite graph P' (¢f. [Jon00], [JP11],
and [MW10]).

It turns out that Grg P embeds as a subalgebra of a free Araki-Woods factor. In Chapter
4 we show that the free transport machinery can be encoded via planar tangles and provide

an application of free transport to finite depth subfactor planar algebras.

Let P be a finite depth subfactor planar algebra and Tr: P — C be the state induced
by the Temperley-Lieb diagrams via duality. By using the transport construction methods

of Chapter 2, we show that we can perturb the embedding constructed in [GJS10] to make



it state-preserving for states on P which are “close” to Tr. Moreover, the von Neumann
algebra generated by the subfactor planar algebra via this embedding is unchanged. In this
context, if P embeds into PT and p is the Perron-Frobenius eigenvector for the bipartite
graph I, then the generator A associated to the free Araki-Woods factor will be determined
by .

The free transport methods in [GS14] and Chapter 2 apply only to joint laws of finitely
many non-commutative random variables. Since each edge in the graph I' will correspond
to a non-commutative random variable, we can only consider finite depth subfactor planar

algebras with these methods.



CHAPTER 2

Non-tracial transport

2.1 Preliminaries

2.1.1 The free Araki-Woods factor and ¢g-deformed Araki-Woods algebras

Let Hg be a real Hilbert space and U, a strongly continuous one-parameter group of orthog-
onal transformations on Hg. Letting H¢ := Hr + iHr be the complexified Hilbert space,
the U; can be extended to a one-parameter unitary group (still denoted as U;). Let A be
the generator of the U; (i.e. Uy = A" and A is a potentially unbounded positive operator).
Let (-,-) be the inner product on H¢ which is complex-linear in the second coordinate (as

all other inner products will be in this section). Define an inner product (-,-),, on H¢ by

(T, y)y = <#w> . ny€He
Let H be the complex Hilbert space obtained by completing H¢ with respect to (-, -),;. Note
that if we start with the trivial one-parameter group U; = 1 forall t then A =1, (-, ), = (-, )
and H = Hc. In this case we will write (-, -); for (-,-),.

For —1 < ¢ < 1, the ¢-Fock space F,(H) is the completion of Fii®(3) := >  H®",
where H®® = CQ with vacuum vector 2, with respect to the sesquilinear form (-, ~>U7 , given
by

(L@@ fa 1 ® @ Gm)yg = Onmm Y ¢ (1, 9x1)) -+ {Frs Gim))
T€Sn

where i(7) denotes the number of inversions of the permutation = € S,,. We may at times

denote F,(Hg, U;) = F4(H) to emphasize {U;}.



For any h € H we can define the left g-creation operator [(h) € B(F,(H)) by

l(h) = h;

(WO @f)=h® fi® @ fn,

then its adjoint is the left g-annihilation operator:

I(h)Q=0;

q
n

BO(fi@-@f) =) ¢ [y i@ fia®fin®- & fo

i=1

Also define
sq(h) :==1,(h) + l;(h).

We let I' ) (Hg, U;) be the C*-algebra generated by {s,(h): h € Hg}. The corresponding
von Neumann algebra M, := I',(Hg, U:)" C B(F,(H)) is called a g-deformed Araki-Woods
algebra, after [Hia03], except when ¢ = 0 where My = T'o(Hg, U;)" is called a free Araki-
Woods factor, after [Shl97].

It was shown in [Hia03] that €2 is a cyclic and separating vector for M, and consequently
the vacuum state ¢q(-) = (€, - Q)Uq is faithful. For ¢ # 0, ¢, is called the g-quasi-free state,
or the g-quasi-free state associated to A. For ¢ = 0, g is called the free quasi-free state, or

the free quasi-free state associated to A.

Remark 2.1.1. For fi,..., f, € Hg, computing ¢,(s,(f1) - - 54(fn)) is best done diagram-
matically through non-crossing (when ¢ = 0) and crossing (when ¢ # 0) pairing diagrams.
When ¢ = 0, visualize a rectangle with the vectors fi,..., f, arranged in order along the

top:
hif o f]

o(s(f1)---s(fn)) counts all the ways to pair the vectors to each other via chords above the

rectangle so that no two chords intersect and if a vector f; is connected to a vector f; (with f;

10



on the left) then that diagram is weighted by a factor of (f;, f;),;. For example the following
diagram has the denoted weight:

T o d o o] = o fidu U Fober s Fo

Thus

P(s(f)s(f2)s(f)s( |f1 f2 f3 f4|+|f1 f2 3 f4|
= <f1’f2>U <f3,f4>U + <f1;f4>U <f27f3>U

Note that ¢ then clearly takes a value of zero on all monomials of odd degree.

When ¢ # 0, the chords may intersect and do so at the cost of a factor of ¢ for each

intersection. Revisiting the previous example in this case we then have

2N
Pa(sa(f1)34(f2)54(f3)54(f2)) |f1 ERE f4|+|f1 f2 [ f4|+|f1 f2 f3 f4|
= (v, L)y (s fa)y + a (s Sa)y (Fos Fdy + (s )y (Fas fado

We note that in computing g,(s,(f1)sa(f2)54(fs)sy(1)) = (X sa(f1)s(f2)sa(Fs)sa(F) Dy,
by writing out sq(f1)sq(f2)s4(f3)s4(f1)2, the term g (fi, f3); (fa2, f1), comes from when
5q(f1)s4(f2) acts on f3 @ f; and the operator I(f) “skips” over the the first vector in

the tensor product (hence the factor of q).

It is a worthwhile exercise to restrict to the case when there is only a single operator s,(f)
(so that all inner-products are 1) and draw out the diagrams corresponding to ¢(s,(f)") for

n=246,8.

The Tomita-Takesaki theory for M, is established in Lemma 1.4 of [Hia03], which we recall
here for convenience. Let S denote the closure of the map 2 — 2*Q, and let S = JAY? be

its polar decomposition so that J and A are the modular conjugation and modular operator,

11



respectively. Then for n > 1

S(fl®®fn):fn®®fn forfla'--aanHR;
Afi®--@f) =A@ (A7) for f1,..., fn € Hr NdomA™";
Jfi®--@f) =AY )@ @ (A2 for fi,..., fo € Hr N domA™Y2,

Denote by ¢/(-) = A" - A= the modular automorphism group of ¢,.

(2.1)

Henceforth we assume dim(Hg) = N < oo. Consequently A and A~ are bounded

operators and hence {0} };cr extends to {07?}.cc. In particular for a,b € M,

plab) = (a2, 60),,, = (a2, 09),, = (b2, Alaf2)

Uyq

_ <AA—%JbQ, aQ> — (AVQ, a0y, = (0 (b)a).

Uyq

Moreover, the action of A in (2.1) extends to fi,..., fn € H.

From Remark 2.12 in [Shl197] it follows that for a suitable orthonormal basis {ey, . ..

of (Hg, (-, -)), the generator A can be represented as a matrix of the form
A =diag(Aq,...,Ap,1,...,1),
where for each k € {1,...,L}

1 e+ A =i (=AY

Ak = — € MQ(C),
2V =AY A+

and A\, > 0. Note that

it cos(tlog A\r) —sin(tlogAx)
k pu—
sin(tlog \x)  cos(tlog A\x)

(2.3)

which is a unitary matrix such that (A%)* = (A#)" = A", A has the following properties:

1. spectrum(A) = {1’Aic1’ N _’)\%1};

2. AT =A%
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3. (A" = (A" = A~ and

4. for any fixed i € {1,..., N},

N
> I[AJi] < max {1, AF, AT < AL

j=1
For each j =1,..., N, let XJ(-q) = s,(e;) and write X@ = (Xl(q), . ,X](\?)). Since s, is real
linear, it follows that M, = W*(X; (q), X (q)). We observe that
N
o (X)) =Y [AF XY, vzeC,
k=1
or using the vector notation:
of1(X@D) = A=X@D  vYzeC. (2.4)
Indeed, using (2.1) it is easy to see that
of:(l4(e;)) = o(A™¢))
of1(ly(e;)) = o (A™ey).

Equation (2.4) follows from the above properties of A, the linearity of /,, and the conjugate

linearity of [.

2.1.2 Derivations on M,

For the remainder of this section we will consider a single fixed ¢ € (—1,1), so that

(9)

we may repress the superscript (¢) notation on X , and write & for the x-subalgebra

C(Xi,...,Xn) C M, of non-commutative polynomials in N-variables. We also simplify

notation with M := M,, ¢ := ¢,, and o, := ¢f* for z € C.

Foreachj € {1,..., N} welet§;: & — PP be Voiculescu’s free-difference quotient:

6j( Z Jj= Zk o lk @ (Xik+1"'Xin)o;

that is, ¢; is the unique derivation satisfying 6;(X;) = 6;o;1 ® 1. We set the following

conventions for working with elementary tensors in & @ S2°P:

13



o (a®b)#(c®d) = (ac) ® (b°d°)
o (a®b°)#c = ach;

o (@) = a* @ (b*)°;

o (a®b?) :=b*® (a*)°

o (a®b°) :=b® a°;

e m(a®b°) = ab.

We also define the left and right actions of & as:

e ¢ (a®b°) = (ca) ® D%
e (a®b)-c:=a® (be)°.

Note that

(ac) @ (db)°;

c-(a®b’)=(c®1°)#(a®1°), and

(@@ c=(1®)#(a® D).

(1))

We will usually suppress the notation “o
diagrammatically as follows:
X, - X, ®Xj--~ij:_1? tn|
mJIm—1"""J2]]
Then multiplication is neatly expressed as:
i1y #/ﬁ' Ep| [ ik k]
| gl im - qlg -

and at times represent tensors of monomials in &

(2.5)

We note the involutions %, {,¢ amount to horizontal reflection, vertical reflection, and 180°

rotation of the diagrams, respectively.

For j,k € {1,..., N}, we use the shorthand notation

A 1= |:

1+ A

14
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Note that the last equality implies a@jr = ayj, aj; = 1, and |ajp| < 1forall j, ke {1,...,N}.

Let 2, € HS(F,(H)) be the Hilbert-Schmidt operator on F,(H) given by the sum
> 0 q" P, where P,: F (H) — H®" is the projection onto vectors of length n. We iden-
tify the Hilbert space generated by the GNS construction with respect to ¢ ® ¢ with
LA(M@MP, o@¢p?) = HS(F,(H)) via a®b® — (Q,b -) af) (¢f. Proposition 5.11 in [Voi98]);
in particular, =y = F, corresponds to 1 ® 1. Realize that the involution | defined above cor-
responds precisely with the adjoint operation in H.S(F,(#)). Consequently, Ej] = =, since,

as a real sum of projections, it is a self-adjoint Hilbert-Schmidt operator.

For each j = 1,..., N we define the derivation é?j(-q): P — PR PP by
N
O\ (P) =" a0 (P)#E,.
k=1

That is, 8]@ is the unique derivation satisfying 8](-'1)()(1») = a;;=2,. We shall also consider the

derivations
— N 3 =
IOP) =Y aud(P#E,  and A=Y an (B(P)#E,).
P k=1

which are related to aj@ by

(@) Pyt _ 5@ p+ (@) pyx _ Al@)( p
o\(P)t = 9y (P¥) and (P = 9,” (P).

J

We remark that in the tracial case (U, = 1;), we have 5](9) = [, r4(e;)], where r,(e;) is the

right g-creation operator. This is precisely the derivation considered in Lemma 27 of [?].

From (2.4) we see that

N 24
09 (X)) = S A e, ={ } =,
J Z j=q 11 A y q

=1

and thus (o_; ® 0_;;) 00, 0 0;; defines the unique derivation satisfying Xj — [Mit] o =g In

1+A
{2 } { 2 ] [ : ]
L+A],  [1+A L [1+A],
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we see that

(0; ®0;) 0 83(.(1) oco_; = 5](-(1). (2.6)
The motivation for considering such derivations is precisely the following proposition.

Proposition 2.1.2. View 83(.(1) and 55” as densely defined operators from L*(2,p) to
L*(P @ PP o). Then1®1 € domﬁj(q)* with

9" (1®1) = X;. (2.7)
Moreover, 1®1 € doméj(-q)* with
0 (1®1) = o_i(X;). (2.8)

Remark 2.1.3. The above proposition states that Xy, ..., Xy (resp. 0_;(X1),...,04(Xn))
are conjugate variables to X with respect to the derivations 8@, . ,8](\?) (resp. 5@, . ,5](\?))

(cf. Section 3 of [Voi98]).
Proof. Consider the monomial P = X, --- X; € . Then,
QO(XJP> = <XJQ, PQ>U7q = <P1XJQ, PQ>U,q = <P1XJQ, Ppo)U,q’

where P, € B(F,(H)) is the projection onto tensors of length one. As P is a product of the
Xi,, it is clear that P, PQ) will be a linear combination of ¢;,, ..., e;,, say P PQ) = Zzzl CkCi -

We claim that

oo
= d(PXy - X0QPX,,, X, )y
1=0
Indeed, diagrammatically each term contributing to ¢ is a pairing of the vectors e;,, ..., e;,

with e;, excluded. We can arrange such pairings according to the number of pairs whose
connecting chords cross over e;,. Fix [ > 0 and consider pairings with [ chords passing over
ei,. Write P = A, X, By, then P, B} gives pairings within By, that leave [ vectors unpaired.

Hence (Q, AP, B;2) counts the pairings in which there are exactly [ pairs with one vector
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coming from Ay and one coming from By. Since the cost of skipping over e;, [ times is ¢! we

see that
Zq (Q, AkPiBiY) Zq (PALQ, PBiQ)y,
1=0 1=0
as claimed. Thus
(PLXGQPIPQ) =Y (PIXQe)y o= (ej.e)y > d (PAKL PBS),,
k=1 k=1 1=0

Now, we inductively orthonormalize the monomials X; € & with respect to (- Q,- Q)
to obtain a basis {r;} ;>0 so that for each [, span{r;: |j| = [} = span{X;: [i] = [}. Then
P B, = Zm:l <7"1-Q, BQ>U7q r; and using our identification with L*(M&M?, ¢ ® o) we see
that P =3, r; @r;. Thus we have

n

P(X;P) = (ejei)y > d (PAK, PB),,

k=1 1=0
= Z <6j7 eik~>U Z ql Z <AZ;Q, TiQ>U <TZQ’ BkQ>U
k=1 =0 |jl=t " K
- Z €j» Cip, Uzq Z‘:O@SO (Ak®Bk#rl®Tz>
=1 =0 |j|=t

3

<e]'v eik>U & (Pop (Ak & Bk#Eq)

k=1
=R ” <3§Q)P> ,
or (X, P)_ = <1 ©1,09P oy Which implies I (1®1) = X;.
Now,

(0-i(X)), P), = p(0(X))P) = o(PX;) = (P10 (10 1)) = (9" (P),1@1)

J
®»

=@ P (O (P)) = ¢ 0 g0V (P) = (181,87 (P)) |

P

®

so that 1 ® 1 € dom (5](»(1)) and 55.(1)*(1 ®1) =o0_;(Xj). O
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Corollary 2.1.4. Viewing 83(.(1): LA(P,p) — L*(P @ PP o @ @) as a densely defined
operator we have & @ PP C domﬁj(»q)*. In particular, if n € dom(?](-q)* and P € & then

a](q)*(n . P) _ 8j(q)*(77)a,z(P) . 1 ® (IDOP (77#(5':0 (@) éj(q) (P)O) , and

(9)* (q)* op ( = 5(9)
(P ) = PO (n) — p @17 (640 (P)°)
where 6, = 0, ® 05 with z € C. In particular, for P,Q) € & we have

(P Q) =180 (P ®Q#X,
—mo(1®¢®o_)o (1 © 0%+ @ 1) (PRQ), (2.9

or equivalently (using Equation (2.6))

A (P2 Q) =100 ](P®Q#X, (2.10)

—mo(1®go®1)o<1®8§‘”+5§‘”®1>o[1®a_i](P®Q)-

Proof. We make the following notational simplifications: (-,-), = () and (-,*) g o =

(-,)g- First note that for A, B,C, D € & we have

@ pP(A® B#C ® D)) = ¢ ® ¢ ((AC) ® (DB)) = ¢(AC)p(DB)
= ¢(0i(C)A)p(Ba_i(D)) = ¢ @ 97(6:(C @ D)#A® B).

Also observe that
6i ((a®@ b)) =6:(b* ® a*) = 0:(b") ® o_i(a*) = 7_;(b)* ® 0;(a)* = 6:(a @ b)".

Now, let Q) € &, then

(n- PO @) =(@o"@-P) =(no"@QP)-Q- 9" (F))_

e ([0 )] QP) —p @™ (5 (80(P)) #r#Q e 1)
(o7 i), @) v 0 (a (30(P)) #2001
<

0;(mo—+(P) =16 ¢ (n#0;0 07 (P)°) Q).
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Similarly,

(nr-a0@), = (7@ -9 -@),

= (07" (0), P'Q) — p @ 4™ (510 0 (P )t #1 @ Q)
(1ot 0) - (o (5517 (i 40077)) )
(PO () ~ [p ©17] 0 6, (610 87(P)°) . Q)

= (P (n) o @17 (5. #07(P)) Q).

Applying both of these formulas and (2.7) yields

J J

A (P©Q) = PXjo4(Q) —m (18 |0 i(p 21787 | + |10 ¢)5l"

[ I—

@) (P Q)

—1@oJ(PRQ#X, —mo(1®¢®o_;)o (1 23"+ 07 @ 1) (P®Q).
The equivalent form follows easily from Equation (2.6). O]

For each j we also define the o-difference quotient 0;: &2 — & @ P as

N
aj = Z Oékj(sk,
k=1
which is the unique derivation satisfying 0;(Xj) = au;1 ® 1. We see that
0 (P) = 0;(P)#=
7 J —q-

For ¢ = 0, we have 0; = 8}0) since 2y = 1 ® 1, but otherwise 0, # (9](»[1). We also consider

N N
0;(P) =Y aj6i(P) and 0;(P) =Y ajudp(P)°,
k=1 k=1
which are related to 0;(P) in the expected way. Furthermore, we see that
(O’i®0i)oaj00__i:5j7 (211)

by the same argument that produced (2.6).

These latter derivations do not depend on ¢ and in fact could have been defined on

C(t1,...,ty) where the ¢; are some abstract indeterminates. This “universality” means
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that they are suitable for stating a Schwinger-Dyson equation (c¢f. Subsection 2.1.10), which
is a non-commutative differential equation satisfied by a unique state under certain restric-
tions. This uniqueness is precisely what will allow us to to establish the state-preserving

isomorphism M, = M,, for small |g]|.

2.1.3 The Banach algebra 2% and norm |- ||g-

We use the convention that an underline connotes a multi-index: j = (ji,...,jn) € N" for
some n. Then |j| gives the length of the multi-index. We write j-k to mean the concatenation
of multi-indices j and k: (ji,..., jn, k1, ..., k). We also allow concatenation of multi-indices
with single indices: j -1 = (j1,...,jn,[). Monomials of the form Xj, --- X may be denoted

by X; when j = (ji,...,jn). Hence an arbitrary P € & may be written as

with ¢(j) € C. Denote the reversed multi-index by j ' = (ju, ..., 1), then X;= X, For

each n > 0, we let m,: & — & be the projection onto monomials of degree n:

ljl=n
For R > 0 we consider the norm || - ||z defined in [GS14]:

deg P

1Pllr="Y_ > le()IR"

Denote the centralizer of ¢ in & by P, = P N M,, where M, = {a € M: 0;(a) = a}.
Observe that as o; does not change the degree of a monomial (i.e. [0, 7,] = 0 for each n),

pPe 2, iff m,(P) € &, for every n > 0.

Define a map on monomials by

P, X,) = 0 4(X,) X, o X

jn—l’
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then by letting p(c) = ¢ for ¢ € C we can extend this to a linear map p: & — . We refer

to p*(P) as a o-cyclic rearrangement of P. We note that

p X X)) = X, X 00(X)).

We define
deg P
1P|l o = Z sup o™ (7 (P)) || € [0, 00].

Then from the norm properties of || - ||z and the subadditivity of the supremum it is easy to
see that for P,QQ € & and c € C

L [|ePllre = lcl|Plro

< |[Pllreo

3. |Pllrpo =0 = P =0.

Hence, || - ||ro restricted to the set {P € £ |P||lr, < oo} =: P is a norm.

Observe that p*(o_im(Xj, --- X;,)) = o™ (X,

i1 X)), 80 || - ||re is invariant under

Oim, m € Z. Consequently, £, C /™t Indeed, if P € &, then ,(P) € £, for all n.
Hence pk (7, (P)) = p' (7, (P)) where k,, = [,,(modn) and I,, € {0,...,n—1}. Consequently

deg P
Pllp, = (0 (P))||r < o0
IPlno =32, el (P)l < oo
In fact, since || - ||z is a Banach norm and

lo—s(X) e =D [Al R < [IA] R,

k=1
it is easy to see that ||p' (m,(P))||lr < || A" ||7n(P)||g for n > 1 and any I,, € {1,...,n—1}.
Thus we have the bound

|Pllza < JAI="|Plle,  for P e 2,
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We let 220 and 22(:9) denote the closures of & and 227" with respect to the norms
|- |lr and ||- || r.s, respectively. Both can be thought of as non-commutative power series: the
former whose radii of convergence are at least R and the latter whose radii of convergence

for each o-cyclic rearrangement are at least R. Note that m, can be extended to both 2%

and 219 with
|P|lr = Z [7(P) | R and |P||lro = Z 170 (P)|| .o

We claim that 22(f:9) is a Banach algebra. It suffices to show |PQ|ro < |Pllrel|Qllro-
Initially we consider the case P =3, a(t)X; and @ = 7, b(j)X; for m,n > 0. Fix
k € 7Z and write k = r(m + n) + 1. We treat the case 0 <[ < n, the case n <l <n+m

being similar. We also introduce the following notation for |i| = |j| =n and t € R:

ST,

u=1
Now,
PH(PQ) = a(D)b (j - k) o—igrs1)(Xp)o—in(X; X;)
e
k=t
_ > a@b (k) A (k k) A7 (6,0) A7 (.5) XXX,
g|:m il=m
|l!|:”_l |]‘|J=n7l
E= =
hence

I Pl = 3 | X2 al@b (G- k) A (kk) A (60) 4 (3.5)| R

Ji\=m !g\:m
i iy
= [ |j|=n—1 |ljl=n—i

lkj=t | IEI=

=l (P)&lle™ @k < IPlrolQl ko
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Thus [|PQ re < [|PllrellQlls.q
Now let P,Q € 259 be arbitrary. Then

IPQlrs < Y Imn(P)ma(Q)llre < Z 17 (P) | 2.0 7 (Q) | 2.0

m,n=0 m,n=0

(ZHM Hm) (ZH% HRU>:HPHR,UHQHR,J-

Hence 29 is a Banach algebra.

Since || - || is dominated by || - ||ry, we can embed ) into 2B, Furthermore,
the following Lemma implies that if B > || X4||,...,[|Xn]| (so that || - ||z dominates the
operator norm) then we can embed 2% into M. From Lemma 4 in [BS91] we see that
1X5] < =2 ‘  for all j = , N, so we restrict ourselves to R > —| from now on and
consider 2B ¢ 2B C M as subalgebras. We let QZéR’U and @w denote their respective

intersections with M.

Lemma 2.1.5. Let R > max; || Xj|| and suppose the coefficients fg(i) € C, for n > 0 and
|i| = n, satisfy
> D Be@IR" < cc.
n>0 [i/=n
Then
Q=Y Boli)X
n>0 [i/=n

is an element of M and @ = 0 if and only if every coefficient Sg(i) = 0.

Proof. The hypothesis on the coefficients implies ||Q||zr < oo and that
Q= Y > Bo)X
0<n<k |i|=n
converge to @ in the || - ||g-norm. As the @); are polynomials in the Xj, they lie in M.

Since the || - | g-norm dominates the operator norm by our hypothesis on R, we then see that

Qe cum
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Now, suppose () = 0. The rest of the proof follows mutatis mutandis from Lemma 37
of [Dab14] once we note that the free difference quotients {d;}7_, are closable. As each d; is
linear combinations of the 0; (using the fact that 1+_A is invertible), it suffices to show that
each 0; is closable. This is easily checked using (2.10). O
Remark 2.1.6. The second part of the previous lemma is really asserting that the generators
are analytically free. We also note that the closability of the {@-}?:1 relied only on the
existence of conjugate variables. Indeed, if {; = 97(1 ® 1) then Equation (2.10) holds when

X is replaced with &;, and hence 0; is closable.
We shall also use || - ||g» to denote the norm on (@(R’U))N defined by

1Py, - Py)l[Ro = max{(|Pil|ro, - [Pyl ro -

2.1.4 The operators 4, ¥, ., 1I, #,, ¢ and 9.

The maps .47, ¥, and II are defined as in [GS14], but we recall them here for convenience.

A is defined on monomials by
N(Xy) = i X,

and is linearly extended to a map A4 : 22U — W) 1. ) - @) iy terms of our
present notation is simply 1 — my: it is the projection onto power series with zero constant

term. Lastly, ¥ is the inverse of .4 precomposed with II:
1
Y(X;) =

_-Xi7
ol

if |¢| > 0 and is zero otherwise.

Next we consider the following map defined on monomials as:

1
y(XZd %Z )7
k=0

and on constants as simply .#(c) = ¢. For n > 0 and P € 7, (£,),



And of course p(L(c)) = ¢ = (c) Thus if we denote the set of o-cyclically symmetric
clements by 2% = (P ): p(P) = P}, then

I (2F) ¢ 2B o)

with the last inclusion following from the fact that p"(m,(P)) = 0_;(m,(P)) and P € @éR’J)
iff m,(P) € &, for each n. Moreover, .# is a contraction on ngpR’U) with respect to the
| - |ro- Indeed, since ||Q|ro = ||Q|r for @ € 2L for P e 20 we have

1
1 (P)ll g = 7 (P)llr < Z . Z 1" (m(P)|lr < Z 170 (P)llroe = 1Pl R0
n=0 k=0

If f=(fi,...,fn) with f; € & then we write Zf, Z,f € My(& @ &) for the

matrices given by

|7 flij = 0;fi and [Zoflij = 0;fi.

On elements QQ € My (2 @ P°) we define the adjoint, transpose, and dagger involution as:

(@i = ldljis
@) = lal:,
(Qi; = lal};

Thus Q* = (Q")T = (Q")'. Consequently, we define
(Ioflij=0ifi  and [ Zofly; = Oif;,

so that (_Z, )t = Z,(f*) and (_Z,f)* = Z,(f*).

Recall X = (Xi,...,Xn) and observe that [ 7, X];; = o;;1 ® 1. So after embedding
My(C) into My (2 © £°) in the obvious way, _#,X and 125 can be used interchangeably.
Consequently it is clear that #,X is self-adjoint (with respect to the adjoint defined above)

and invertible with inverse satisfying [ 7, X '];; = [152] ;1oL
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We also define the multiplication for @, Q" € My(Z @ Z°P) and left actions on f =
(flu"'7fN)7 g = (glu"'7gN) € '@N by

N
Q#Qi; = [Qu#lQr; € P @ P™, fori,je{l,....N},
k=1
N N
Q#g - Z z]#g]> € gZN, and
J=1 i=1
N
f#g=>_ figi€ P
j=1

For Q € Mn(Z @ &°P) we extend the notation of (2.5) by writing

e
[Qlij = iy

when [Q]ij:Xkl"'an®Xl1"'le7 1,] € {1,,N}

Lastly, we define the jth o-cyclic derivative 9;: & — & by
-@j(Xkl cee an) = Zajkzg—i(ka e an)Xkl s szfr

9; can also be written as mooo (1®0o_;)0d;. Let P = (Z,P,...,I5P) € PV be the

o-cyclic gradient. We also define

Di( Xy - Xua) = > i Xy - Xuo0i( Xy - X ),

or Z; = mooo(0;®1)0d;. Then (Z;P)* = 2;(P*), and from (2.11) we also have Z;00, = J;.

2.1.5 The norm || ||ge, r-

Following [GS14], we denote by || - ||rs,r the projective tensor product norm on & @ FP;

S

that is,

; @ b; —sup

R®rR
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where the supremum is taken over all maps 1 valued in a Banach algebra such that n(a ® 1)
and 7(1®b) commute and have norms bounded by ||a||g and ||b]| g, respectively. In particular,
letting 1 be given by left and right multiplication on & we see that for D € & ® & and

g € &, we have

[D#glle < 1Dl ro.rllgllr-
We extend the norm to (2 @ 2°°)N by putting for F = (Fy,..., Fy) € (? @ 2%)Y
1F'llrs.r = max [|F]|re. k-

The same symbol is used to denote the norm imposed on My (& @ Z°) by identifying it
with the Banach space of left multiplication operators on (2 @ 22°)" . In [GS14] it is noted

that this norm is given by

N
1@l re.r = max > " [I[Qlijllre.r-
7=1

1<i<N £

2.1.6 Cyclic derivatives of o-cyclically symmetric polynomials

Suppose g € m, (‘@éﬁ-’a)) and write g = 37, c(j)X;. Then the condition pl(g) = g for
1 €{0,...,n— 1} implies

k| lgl=n—t
Hence
c(i-§) = clj-k)A(k,i). (2.12)
|k|=1
A similar computation using [ € {—n+1,...,—1,0} yields

c(i-j) =) elk-D)A™ (k- j). (2.13)

|k|=t
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Since p"(g) = 0_;(g) for g € m,(Z), we can use Equation (2.12) to characterize the coeffi-
cients of g € m, (Z,):
c(i) = Y e(k)A(k, ). (2.14)
|k|=n

With these formulas in hand, the following lemmas are easily obtained.
Lemma 2.1.7. For P =}, c(i)X; € T (Pcs.) and each t € {1,..., N} we have

ZEP = ay,c(i)Xi, -+ X, (2.15)

n—1"
lil=n

Moreover, 9% can be extended to a bounded operator 9% : P27 — (Q(R))N with || 2% <
% Additionally, for 1 < S < R, Z can be extended to a bounded operator 2 : P8

(25 ) with | 2| < C (£) depending only on the ratio £.

Proof. Let P = 37, _, c(i)X;. Equation (2.15) follows easily from Equation (2.12), which

then implies

. - 1
|25 Pl = || D au,e(@) X - X, <Z| IR = 21Pllx = 5Pl
li|=n

So for arbitrary P € &, we have

deg P
|Z%P|| g = max ||@tEP||R< max ||Z2 X7, (P)||r
tefl, .., £~ te(1,..N}
degP

< Z —H7rn Nro = ”PHR,m

and so Y extends to @c(_f_’a) with the claimed bound on its norm.
Considering only 2, (2.15) implies
gtp =N Z atikc(Z)Xil s Xin—1

for P € 7, (., ). Hence

. S o nSm!
2Pl <n X i =n (5) I
|i|=n
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A routine computation shows for each n

n ST (5Y Zeo (B
R — R — \R/) S )’

The rest of the argument then proceeds as in the previous case. O

1
where ¢ = RS

Lemma 2.1.8. For P € z@éR’a)
DLTP = 9P.

Proof. Suppose P € m,(#,). The cases n = 0,1 are clear so suppose n > 2. Write

i
L

n—1

1 _ 1

HIIP = — E E C(l . E)O',l(XE)Xl = — § C(l ) E)A(kaz)XZXl
(it "0 =t (=
"l ==t
1 Z"‘l S (o . S 1 S i
= E E C((Zl+17"'72n) E)A(Ea (Zla"'7zl)) Xz = E b(l)Xl

lil=n | =0 |k|=l lil=n

So if we let @ = }7;_, b(i)X;, then IIP = ¥Q and using Equation (2.15) we obtain

PDINP = ay, b(D) X, - Xy,
lil=n

for each t € {1,...,N}. It is then a straightforward computation to show that the above

equals Z;P. The case for general P € BzéR’a) then follows from linearity. O

2.1.7 Notation

We use the same notation as in [GS14], adjusted slightly to accommodate our new operators.

For Q) € Mn(2 @ &) we write

N
Q) =) Qi€ # @ 27,
=1 N
Tra(Q) = Tr(A#Q) = Y [A];[Ql; € 2 @ 27,
i,j=1
’ N
TI”A—l(Q) = TI“(A_l#Q) = Z [A_l]ij[Q]ji € 4@ & @Op.
i,j=1
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By Corollary 2.1.4 & ® £° C dom d}, so we note

N

PR <Z af([@]ji)) e L*(2,o)".

j=1
where ¢, is viewed as a densely defined operator from L?(2", ) to L*(My (P @ PP), p®
¢ @ Tr) and the above is its adjoint.

2.1.8 Transport and invertible power series

Let (M, 60) be a von Neumann algebra with faithful normal state 6 and let Ty,..., Ty €
M be self-adjoint elements which generate M. Then, after [GS14], M can be thought
of as a completion of the algebra C(717,...,Tx), and 6 induces a linear functional 67 on
C(ti,...,ty), the non-commutative polynomials in abstract indeterminates t¢1,...,ty, via
Op(te, - tr,) = 0Ly, -+ Tk,), k1,... . kn € {1,...,N}. O is called the non-commutative
law of Ty, ..., Tx and we write W*(67) =2 M. Let Sy,...,Sy € N be self-adjoint elements
generating another von Neumann algebra A with faithful normal state ¥ and let ¥g be their

law so that W*(¢g) = N.

Definition 2.1.9. By transport from 67 to s we mean an N-tuple of self-adjoint elements

Y1, ..., Yy € M having the same law as Sy, ..., Sn:

Y(P(Sy,...,5n)) = 0(P(Y1,...,Y)),

for all non-commutative polynomials P in N variables. If such an N-tuple exists then there

is a state-preserving embedding N' = W*(Y) C M.

Let M = W*(Xy,...,Xn) be as before. Suppose L is a von Neumann algebra generated
by self-adjoint Zi,...,Zy with faithful normal state ¢ and there exists transport ¥ =
(Ya,...,Yy) from px to 1z such that Y = G(X) € (ZB)N. That is, V; = G;(X) is a
power series in terms of Xi,..., Xy. If we can invert this power series so that X = H(Y),
then H(Z) € LY is transport from 9z to px. It would then follow that we have a state-
preserving isomorphism L = M. The following lemma, which is presented as Corollary 2.4

in [GS14], shows that such inverses can be found.
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Lemma 2.1.10. Let R < S and consider the equation Y = X + f(X) with f € (2NN and
|Yllr < S. Let R = max{R, ||Y||r} < S. Then there exists a constant C' > 0, depending
only on S and R so that whenever ||f|ls < C, then there evists H € (2FN)N so that
X = H(Y).

Proof. Fix §" € (R, S) and define
n o Nk—1 g—k
CA(S') = I flls mas k()57

Since ||f||s < C, we can choose C' sufficiently small so that C'(S’) < 1 and

C
/ —< /'
R+ 16y 59

We define a sequence of N-tuples of (a priori formal) power series with H(®) = X and
H® =X — f(H* 1Y)y VE>1.

We claim that H®) € (2FENN with ||H® ||z < S’ for each k& > 0. Indeed, this is clearly
true for H® so assume it holds for H®, ..., H#=Y_ Denote the component functions of

HW®) by H](k) for j=1,..., N. Suppose

[i( X, ..., XN) = c(i) X;.

i[>0

Then for any 0 <[ < k — 1 we have
1+1 ! _
1Y — B = [ £HY) = f(HD)|w

. u— l -1 —1)||n—u
<SS @D NHOIS D - BV R |HED |
u=1

n=0 [i|=n =
< ||H(l) _ H(l—l)HR/ Zn(sl)n—ls—n Z lc()|S™
n=0 li|=

<||HY — HEY|[pC(S").
As j was arbitrary, we obtain through iteration

[HHY — HO |l < |HY = HO||pC(S")! = | flwC(S") < CC(S),

31



and thus

IH 5 < | H | + | H® = HO
k—1
S R/ + Z HH(H—l) . H(Z)HRI
=0
k—1
<R +) cos)
=0

C
<R+— <9
<R+ e <5

by our assumption on C. So the claim holds and by induction we have the bound ||[H®) ||z <

S’ for all k > 0. Moreover, by a standard argument we can see that {H®},~, is a Cauchy

sequence and so converges to some H € (PFNN satisfying || H||z < S’ and H = X — f(H).

Now, Y = X + f(X) satisfies |Y|z < R and so H(Y) € ()N with |H(Y)|zr < S’
and HY)=Y — f(H(Y)). Since || X||g = R < 5" we can use the same argument as above

to show
X —HY)[r=IIY = f(X) =Y + f(HY))|[r < |X = HY)|[rC(S").

But C(5") < 1 implies H(Y) = X. O

2.1.9 Monotonicity of transport.

We introduce a definition for what it means for transport to be “monotone.” Note that in

the tracial case (A = 1) this coincides with Definition 2.1 in [GS14].

Definition 2.1.11. We say that transport from ¢x to ¢z via the N-tuple Y = (Y3,...,Yy)
is monotone if Y = ZG for some G € 22" R > 4,/||A||, such that (0% @ 1)( Z,2G) >0
as an operator on L*(P @ PP ¢ @ ¢P)N.

Suppose (M, 1)) is a von Neumann algebra with a faithful normal state ¢. Let H, =
L?(M, 4, &) be the Hilbert space obtained via the GNS construction with a cyclic vector

implementing 1. Let Sy be the Tomita conjugation for the left Hilbert algebra My, and
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let Ay and Jy be the modular operator and conjugation (respectively). Recall (¢f. [Tak03],

Chapter IX, §1) that there is a canonical pointed convex cone

ll-[l

Po = {A) 26 v e M}
which is self-dual in the sense that if n € H,, satisfies (,£),, > 0 for all £ € P, then n € Py
The embedding

1
x = Ajxdy
of M into H,, then has the benefit of sending positive elements in M into P,.

In particular, if M = My(M®M®) and ¢ = p @ ¢ ® Try then

Algbo = (0 s @ 0u)(AiHq#A )6,

We shall see in Lemma 2.2.1.(iv) that if G € ﬁ;R’U) then A°# 7, PGH#HA™® = (0_is ®
0_is)( Fe2G). Hence if Y = ZG for such G, then (a% ®1)(_7,Y) embeds into H,, as

(0_i®0o

J(ATH# (o @ D) J,Y)HA )8 = LY.

i
1

NS

2.1.10 The Schwinger-Dyson equation and free Gibbs state.

Our construction of the transport Y will exploit the condition that ¢y satisfies the so-called

Schwinger-Dyson equation:

Definition 2.1.12. Given V € ,@C(,Ij,’g), we say a linear functional y on & satisfies the

Schwinger-Dyson equation with potential V' if
ev(Z2(V)#P) = ov @ o (Tr( #,P)), VPe . (2.16)
The law @y is called the free Gibbs state with potential V.

Note that when _#, is viewed as a densely defined operator from L*(2?Y, ¢) to L*( My (2 ®
PP), o @ e ®Tr), (2.16) is equivalent to

Ss(1) =9V, (2.17)
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where 1 € My (2 @ &) is the identity matrix.

Consider the potential

N

1

== — | XiX,. 2.1
%QZ[Q}jkk] 2.18)

Then

G, k=1
1 1+ A1
gk, l=1 kj
N
1 1+ A
=5 Z [T] X X, = W,
k=1 kl

and hence V, € 287 Also,

2(Vo) = 12 {ﬂ} (ao—i(X;) + i X;)

2 4~ 2 ..
7,J J
N N
9 [A]ika+— E Xj
2 2 LAl 2y 2 livAl L 2 ]y
1 1
2 l+2 l 15

so that 7V, = X. Using A = A* it is also easy to see that Vj = V4.

Now, (2.17) for V' = V; states #(1) = X, or 9j(1® 1) = Xj for each j = 1,..., N,
where the the adjoint is with respect to ¢y,. However, from (2.7) we know this relation
holds when the adjoint of 0; = 8](-0) is taken with respect to the free quasi-free state p,. We

therefore immediately obtain the following result.

Theorem 2.1.13. The free Gibbs state with potential V is the free quasi-free state pg on
My =T (Hg,U,)".

It is clear that the ¢y, is unique since (2.16) for V' = Vj recursively defines ¢y, for all

monomials. However, even for small perturbations (in the || - ||g,-norm) V =V, + W of V;

34



the free Gibbs state with potential V' is unique, which we demonstrate below. Consequently,
if 1, satisfies the Schwinger-Dyson equation for a V', then to find transport from ¢x it
suffices to produce Y € M* whose law py (determined by () satisfies the Schwinger-Dyson
equation with the same potential V. The proof of uniqueness presented here differs from the

proof of Theorem 2.1 in [GMO06] only in the differential operators considered.

Theorem 2.1.14. Fiz R > 4\/||A||. Let V =V +W € P Then for sufficiently small

\Wl|go, the Schwinger-Dyson equation has a unique solution amongst states that satisfy
o(X))] < 3 (219
for any multi-indez j.

Proof. Suppose two states ¢ and ¢’ both solve the Schwinger-Dyson equation with potential
V. Then ¢(1) = ¢'(1) = 1 and hence they agree on m(2?). Fix [ > 1 and a monomial
P e m_1(2). Then we have

(o = NXiP) = (¢ — ¢ ) @ ©)(P) + (¢ @ (0 — ")) P) — (¢ — & )NZWP).

(Note that for [ = 1 the first two terms disappear). Define

Ai(e,¢) = = max x |(¢ — ¢')(X;)]-

In particular Ag(p, ¢’) = 0. Write W = 3, ¢(j)X;. Then we have

(0, ¢’ <22Ak9090 )3172" ’“+ZZ| N Aps1-1(0,¢).

p=0 |j|=p

For v > 0, set
= V'A(e,¢).
=1

Since (2.19) implies (¢, ¢') < 2(3)!, we see that d,(p,¢’) < o0 so long as 7 < 3. In the

above equality we multiply both sides of the equation by +' and then sum over [ > 1 to
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obtain

L0, <2272Ak¢¢ 3l2k+2722| N Apsi-1(0,¢)
=2

p=0 |j|=p
=2y Zv’%ks&s@ Zvl”3l2k+22| ”“Zv”“ Api-1(p, ¢)
I=k+2 p=0 |j|=p
292
(e, ¢’ +’YZZ\ NPy (0, ).
1 37

p=0 |j|=p

Let v = 25R Then 7! < R and R > 4 implies 3y < . Hence
49 7
d\(p,¢') < dy () (@ + %H@WHngR) :

Recall from Lemma 2.1.7, that H.@WH@ < C||W||r» where the constant only depends on
the ratio % =2 Thus if [|[W||ge < 535 then

dy (¢, ¢") < cd(p,¢) with ¢ < 1,

implying d (¢, ¢’) = 0 and hence A;(yp,¢’) =0 for all I > 1. O

This theorem implies that if the law ¢z of Z = (Z1,...,Zy) C (L,%) and the law ¢y of
Y =(Y1,...,Yy) C (M, p) both solve the Schwinger-Dyson equation with potential V', then
WH*(Zy,...,ZNn) = W*(Y1,...,Yy) =2 W*(py). In particular, W*(¢py ) is well-defined.

2.1.11 Outline of the paper.

The general outline for the paper is as follows: we begin in Section 2.2 by fixing ¢ = 0 and
a potential V = Vo + W € 2% and assuming there exists Y = (Y3,...,Yy) € (ZE)N
whose law (induced by ¢) satisfies the Schwinger-Dyson equation with potential V. Several
equivalent versions of this equation will be derived in Sections 2.2.2 and 2.2.3 until we arrive
at a final version for which a fixed point argument can be applied. Several technical estimates
will be produced in Section 2.2.4 for the purposes of this fixed point argument so that in
Section 2.2.5, given certain assumptions regarding V', we can assert the existence of Y.

Having obtained the desired transport, we then use Lemma 2.1.10 to refine the transport
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into an isomorphism in Section 2.2.6. Finally, in Section 3 we present the main application

to q-deformed Araki-Woods algebras.

2.2 Construction of the Non-tracial monotone transport map

For all this section, we consider only ¢ = 0 and maintain the same notational simplifications
as above (M = My, ¢ = o, Xj(»o) = Xj, and 07° = 0,). Recall that 1} is defined by (2.18)
and that by Theorem 2.1.13, ¢ is the free Gibbs state with potential V. Our goal is to
construct Y = (Y;,...,Yy) € (Z2U)N whose law with respect to ¢ is the free Gibbs state
with potential V = Vo + W € 27 for |W||g,» sufficiently small.

We will need differential operators 0;, #,, #, and & for Y as well as X, so we adopt the
following convention: differential operators which have no indices or have a numeric index
refer to differentiation with respect to Xi,..., Xy. Operators involving differentiation with
respect to Y1,..., Yy shall be labeled Oy,, %y,, etc. We define these latter operators using
the comments at the end of Subsection 2.1.2; that is, dy, (Y%, - - - Y4, ) is computed exactly as

one would compute 0;(Xy, - - Xj,) and exchanging X;’s for Y;’s in the end.

Assuming the law ¢y of Y = (Y3,...,Yy) is the free Gibbs state with potential V' and
1®1 € domdy, (2.17) implies

05,1 1) = Dy, (G(Y) + W) = Y; + 2y, (W(Y)),
or, in short

(Fo)y (1) =Y + (Z2W)(Y). (2.20)
It will turn out that Y = X + f for some f = Z¢ and g € BZC(E_’U), and so we start by

considering the implications of assuming Y is of this form.

2.2.1 Change of variables formula.

Lemma 2.2.1. Assume Y is such that ;Y = (0x,;Y3)ij € Mn(M®M) is bounded and

invertible.
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(i) Define
03(P) = iaxi(m# (oY T # o X],,
then 9; = y,. -
(ii) 0 (1@1) = Y, 0%, 06, ([/(,Y—l#/gx];‘j) Hence
(Jo)y () = 25 (6= (I X#(FY 1)), (2.21)

where 1 € My (M®M®P) is the identity matriz.

(1it) Assume in addition thatY; = 2;G for some G € W;R’g) with G = G*. Then (_Z,Y )" =
(0:21)( Z,Y) and ( Z,Y V)" = (6:@1)(_Z,Y ") and hence Equation (2.21) becomes

(Jov(1) = 5 o(l@a) (JoX# 1Y 7). (2.22)
(iv) For G € gzéR’a),
(0_is ® 0_is)( o DG) = AH# _FoDCGHA®, Vs € R.
Proof. Let Q = _7,Y.
(i): We verify
A N N
0Ys =D OxYi#Q ' # I Xy = Y Qu#lQ ' # 7, X];;
=1 =1
— [Q#Qil#/UX]kj = [/UX]kj == anXk = ozkjl ® 1 = ay]Yk

i1): We compute
(ii) p

(3,02 1), Xy -+ X, ) = (10 1,0y, (X, -+ X))

op
© PR

N
— Z (1®1,0x,(X, - -ka)#[Q_l#/oX]lD@@wop

=1

= Z <6,i ([Qil#/UX]TJ) 78Xl (Xkl o 'ka)>so®<ﬂ°p

N
_ <Z O 001 (10 I XT5) X -+ ka> ~
=1

©
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Recalling that _#,X = #,X*, the definition of _# implies (2.2.1).
(iii): Suppose G = G* € 2. Then
(Fe2G) N = [ I PGy = 0j 0 Di(G)" = 00 Zu(G") = 0; 0 Tu(G).
A computation on monomials shows that
[@- oDy — (0;®1) 00 0 @j] o 0u(P) = Hy(P) — Hy_1(P),

where

Z > [ QAt_}alQAtH] ie+1)(B) @ 0i(C)oi41)(A).

1
a,b=1 P=AX,BX,C 1+A4 k 1+A4 Jjb

We claim that H; 1(P) = H;(c_;(P)). Indeed

Hy 1 (P) = Z > Z {1 T A- 1} o A ﬁfZLq (A Dy

a,b=1 P=AX,BX,C p,q=1

X 0i(1+1)(0-i(B)) ® 0it(0-i(C))0i+1)(0-i(A))

— EN: (A pal A g ) {1 iﬁl} kp ﬁfﬂjq

a,b,p,q=1 P=0;(A)X;0;(B)Xo:(C)

X O-it(t—i-l)(B) ® O-it(c)o-i(t-i-l) (A)

Note that o;(X,) = 3.0 [ApaX, and 03(X,) = S, [A7"»Xs. So continuing the

above computation we have

Hi Z > [ 2At_} [2At+1] Tit(t+1)(B) @ 0it(C) i1y (A)

1
p,g=1 P=c;(AX, BX,C) 1+4 1+4

>y

pg=10_;(P)=AX,BX,C

= Hy(o-i(P)).

[ 24! } {zAm

TrA1t| |1+ A] Tit(+1)(B) @ 0 (C)0i(111) (A)

Thus from G = 0_;(G) we obtain

[5]' o -@k — (Ui & 1) od o @]] o O','t(G) =0,
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and hence

(Je2G)" = (0: @ 1)( I, 2G).

Now, if Y = 2G for such G then Z,Y* = (0; ® 1)(_Z,Y) and _#,Y ' satisfies this
formula as well because 0; ® 1 is a homomorphism. That Equation (2.21) becomes
Equation (2.22) is then clear after realizing #,X = (0i ® 05)(_7,X) for all t,s € R

(since the entries of _#,X are merely scalars multiplied with 1 ® 1).

: Recall
N
(0_it ®0_iy)00j00y = Z[A_t]kjak-
k=1
Also,
53' = (O'i & Ui) o aj © 0,
so that
p— N —
(0t ®0_i) 0000y = [A 50k
k=1

Using these identities we have

(0_is ®0_js) 00,0 D; = (0_is ®0_j5) 0O, omooo(l®o_;) o0,

NE

[A™"]ak [A_s]bjaa omooo(l®o_;)o 051, 0 0_js

a,b=1

] =

[As]jb[Ais]akaa o -@b O 0_js-

=

a,b,=1

Hence for G € 287 we have

[(0_is ® 0_i)( Fo D) ji = (0_is @ 0_i5) 0 O 0 Z;(G)

= Z [As]jb[Ais]akaa o Do o_is(Q)

a,b,=1

WE

[A%][A™ ok Fo D Gloa = [A°# _Fo DCGHA™ i,

a,b,=1

for each 7,k =1,...,N. O

o=
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Corollary 2.2.2. Assume g = g* € QZS(DR’U) and put G = Vo + g and f; = P;g9. Let
Y; = X;+ fj so that Y = 9G. Define B= f,f# #,X ' and assume 1 + B is invertible.
Then Equation (2.20) is equivalent to the equation

Fro(1®oy) (HLB) =X+ f+ (W)X + f). (2.23)

Proof. Since 7,X + Z,f = 1+ B)# 7,X, fZ,¥ = 7,X + Z,f is invertible as a
consequence of 1 + B and _Z,X both being invertible. Then upon noting that

1

T X#( I X + Fof)  =1#(1+B)"! 1B’

the corollary follows immediately from Lemma 2.2.1, (ii) and (iii). O

2.2.2 An equivalent form of Equation (2.23)

Lemma 2.2.3. Assume that the map & — (1 + B)# is invertible on (QZ(R))N, and that
f =Yg for some self-adjoint g € @éR7U). Let

Then Equation (2.23) is equivalent to
K(f) =2(W(X + [))
B B2
b |Br B g0 w0 (1) - Are oo (115)].

Proof. Using 17 = 1— & and ZFo(1®0;)(1) = (1) = X, we see that Equation (2.23)

is equivalent to

0= 7 o0(1®0;) (%) + [+ (W)X + f).

By the assumed invertibility of multiplying by (1 + B), this is then equivalent to
0 Fo(1®oy) b + f+(@W)(X + f)
= O Ui
Ao 1+B

+ B# Z5 0o (1®0;) (%) + B#f + B#(9W)(X + f).
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Using 7> = = — 5, we then obtain

K(f) =(@W)(X + ) + BHEOW)(X + 1
wBrr b o0) (1) - sretea) (125

Thus it remains to show
Z;(W(X + f)) =1+ B)#IW)(X + [,

for each j = 1,..., N. Initially suppose W = X, --- X}, (the general case will follow via

linearity), then

WX+ f) = (Xey + fra) - (X + fr)-

For notational convenience, if we are focusing on the k;th factor then we will write W (X +
f) = Ai(X}, + fr,)Bi. Using the derivation property of d; in Z; = mooo (1®0_;)00d; we

have

9 X+f Zmooo 1®0‘ )[Al(a]kl1®1—|—5j(fkl))Bl]

= Z a0 i(Br) A+ (1 ® 03) 0 05(fi,)*#0i(B1) A,

=1

—(PW)(X + [) + Y O (fi)#0i(B)A,

=1

where we have used (_Z,f)* = ( £, 29)" = (0: ® 1)(_7,29) = (0, ® 1)(_Zof). Now

[B#(ZW)(X + f)l;

[Blintt (W)X + £) =D D [ ol it I Xt (ZW)(X + f)

Mz

= [ o fl# Z[/UX_I]M D g, mooo(1®o_)od,(W)(X + f)
=1 k=1 p=1

n

o flitimooo (L@ 1) o (W)X + f) = S [fo flintto—i( B)A,

=1

WE

N
Il
i

which is precisely the second term in our above computation of Z;(W (X + f)). O]
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2.2.3 Some identities involving ¢, and Z.
Lemma 2.2.4. Let g € f@éR’U) and let f = Pg. Then for any m > —1 we have:

—Jy o (1@ 0))(B™)+B# 77 o (1@ 0:)(B™)

1
- m@ [(p®1)o Try 4 (1 ® @) o Try] (B™?)

Proof. We prove the identity weakly. Let P € (Z2")N be a test function and denote
o= ¢ ®e?®Tr. Then

(P, = 5o (1®0)(B™?) + B# 7 o (1®0:)(B™))

©p

- - <jUP7 (1 ®Ui)<Bm+2)>¢ + <Z Pz*#BZJ# [/; © (1 ® Ui)(Bm+1>:|j>

— (AP (@ a) (B, + ¢ (Zm @ )(B#P# [ fro (18 ai><Bm+1>L>

7,7=1

= —{(JP.(100:)(B™?), + Z< 1@ 0 )(By)#P:, [ 77 o (1®ai)(Bm+1)]j>

i,7=1

= — (P18 0)(B™), +( f {1 @ 0-)(BI#P}, (L& 0)(B™),
:—</o ) 1®Gz‘) Bm+2 >¢ </a —1#/0 {6i(/0f)#P}7(1®0'i)(Bm+1)>¢,

)

where we have used (_Z,f)* = (0, ® 1)(_Z,f) from Lemma 2.2.1.(iii). Now we focus on the

term _Z,{0;( Zof)#P}:
[IoAGi(Io)#PY =D (0 @ 1) 060 Oi(f;)#2P,+ (1@ D) 0 650 O(f;)#1 P

+ 0,0 al(fj)#ak(Pl)7

where a ® b ® c#1€ = aéb® c and a ® b ® c#2£ = a ® béc. Define

N

ﬁg = Z(ak ®@1)o6;00(fj)#2P + (1 ® 0) 0 6;00(f;)#1 P,

=1

so that

IA6i( I N)#PY = Q" + 6i( o f)# o P.

43



Continuing our initial computation we obtain

(P, = 7 0(1®a;) (B™?) + B# 7, o (1®0,)(B"™))
== o ((JP) #(1®0,)(B™))
+¢ ((QF)# L. X' #(1 © 0:)(B™))
+ 0 ((JeP)#6-i((Jof))# I X 31 ® 0:)(B™))
—(Q", X" #(1 @) (B™),.

®

Hence

(=S50 1@a)(B™?) + B# #; 0 (1@ ) (B™), P),
= (S X #(1@0)(B™),Q"), = d((1@ o) (Bj)™) £:X Q")
= 0190 ) JoX N Iof) -+ JoX (Jaf) FoX Q")
m+1

= o((1® 0-i)( S X (0: @ 1)( o f) o JoX N 0i @ V)(Jof) S XQT)

m+1

= o( S X"6:(B™Q") = 6(Q7 XTI B,

We break from the present computation to consider the terms on the other side of the desired

equality.

For each u = 1,...,m + 2 let R, be the matrix such that [R,]; ;. = @, ® b, for some

iu, Ju € {1,..., N} and all other entries are zero. Then

m+2
TI'Afl(Rl st Rm+2) = TF(A_lRl s Rm+2) = [A_l]jm+2i1 H (5~u:iu+1a1 cc o Amt2 &® bm+2 s bl-
u=1

Denote C' = [Ail]jmjinl Hum+12 0;

=1 Yju=tusy1-

Then

Z 2 (Dk<90 @ 1) Trp-1 (R - Rm+2)Pk) = Z Colar - ams+2)p(Di(bimsa - - - b1) )
k k
= Z Co(oi(ay - amya)ar - ay—1)P(bu—1 - b10i(byt2 - bus1) - 65 0 O (bu)# Py
k,u

= Z @ ¢” @ Tr(Aqp)(Ry)(0: @ 03)(Rus1 - -+ Ring2) A Ry -+ - Ryy),
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where for an arbitrary matrix O
[Awp)(O)ij = 0 @ (61 0 ) ([Olij)#2 P
k
Using linearity, replace R, with B for each u. From Lemma 2.2.1.(iv) we know (0; ®
o Fo[)A =A"1 7, f. As [A,_7,X71] =0, we also have (0; ® 0;)(B)A™!' = A™'B and
hence

S (Dilp @ DTeas (B™)B) = (m + 2)6(Ap)(B) A B™).

Observe that the left-hand side is (Z(¢ ® 1)Tr4-1(B™"2, P). Indeed,
(P00 NTra-s(B™), P) =3 oo ® Teas(B)™ )R,
and

(@ )Tr(A™H(B)™) = (¢ @ )Tx(A™ 7,X " (0: ® 1)( o ]) o o X 0: @ 1)(Jo]))

= (p@1)(0; @ DNTr(A'B™?) = (p ® 1)Tr(AB™ 1),

where in the second to last equality we have used the fact that A~' and _#, X! commute.

So
— (P(0 @ 1)Tr4-1(B™*?), P) = ¢(Ap,py(B)A™ ' B™ ),
and a similar computation yields

mto (2(1® ¢)Tra(B™?), P) = $(Ag,p)(B)AB™),

where for an arbitrary matrix O

[A,p)(0)]i = D (650 8k) @ oi([Oij)#1 Py

k

Thus it suffices to show

Aap)(B)A™ +App)(B)A=Q" X7
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This is easily verified entry-wise using the identities

(0, ®1) 0,00, = (0 ® (G 00)) o (Z[A_l}br(%) )

N
( ®5)00103k ((aloﬁk)@)a (Z br5b>a
b=1
and the definitions of QF, Ay p), A, p). O
Lemma 2.2.5. Assume [ = D¢ for g = g* € QZ&R’U) and that ||B||rg,.r < 1. Let
Q) =[1®p)oTra+ (p®1)o Tra-1] (B —log(l + B)).

Then
@Q<g>=3#/;o<1®ai><lf3) 7o (®Ji)(1f—23>.

Proof. Using the previous lemma this follows from comparing the convergent power series

of each side. O

Lemma 2.2.6. Let
K(f)=-J50(1®0)(B) - .

Assume that f = Dg for g=g* € @SE,R’U). Then
K(f)=2{l(p@1)o Tras + (1@ ) o Tra] (B) — AN g}.
Proof. When m = —1, the equality in Lemma 2.2.4 becomes
Zp@1)oTrar + (1 @¢p)oTra](B) = = 770 (1@ a)(B) + B# 7, o (1®ai)(1).

Since X = #5(1) = #7 o (1® 0;)(1), the last term becomes B#X = 7 f#X = N f.
Since IN g = (N +1)Pg =N+ f, we have

Z{(e@1) o Trar+ (1@ @) o Tra] (B) = N gt = = F7o(1@0:)(B) + N f - DNy
= K(f),

as claimed. 0
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Lemma 2.2.7. Assume [ = Zg for g = g* € 25 and | Z29llre.r < 1. Let Q(g) be as

before. Then Equation (2.23) is equivalent to

Z{l(p®1) 0 Tra-rt+ (1® @) o Tra] (7 Pg) — N g}
= 2W(X +29)) + 2Q9) + JoD9#( - X) " #2g9.  (224)

Proof. By Lemma 2.2.6, the left-hand side is K(f). Then using Lemmas 2.2.3 and 2.2.5 we

have

K() = 20O+ 1) + B4 75 0 (100) (1) = oo a) (12 ) + B
= PW(X + 99)) + 9QUo) + £ T9#( £ X)" %5

Note that the hypothesis in Lemma 2.5 that the map £ — (14 B)#¢ is invertible is satisfied

since ||B|lre,r = |7 29|lro.r < 1. -

To prove the existence of a g satisfying the equation above we use a fixed point argument

and therefore require some preliminary estimates.

2.2.4 Technical estimates.

Recall that ||.X,|| <2 for each j =1,..., N. Since ¢ is a state it then follows that

lo( Xy, -+ X)) < 2. (2.25)
Lemma 2.2.8. For ¢i,...,9m € &,

(1®p)oTra+ (e ®@1)o Tra| (L Dg# - # I Dgm) € Py.

Proof. Recall A7'#% # Dg# A" = (04 @ 0u)( F Pg) for g € 28%) by Lemma 2.2.1.(iv).
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Given this identity, for g1, ..., g € &, we have

(1 ® ) o Te(A# 2 Dot - # I Dgm)
=(1®¢)oTr((o— @ oi)(f Dn# - # .7 Dgm)#A)
=(1@p)oTr(A#(oi @ o-i)( I Dogi# - # I Dgm))
=0_i0o(1®@¢) o Te(A# Z Dgi# - # I Dgm),

implying (1 ® @) o Tra( 2 Dg# - #_7 Dgm) € &,. Similarly

(p@1) o Te(AT'# I Dg# - # 7 D)
=0,0(p@1) o Tr(A'H# I Dgi# -+ # I Dgm),

implying (¢ @ 1) o Tra-1( L Pg1# - #_ Dgm) € P,. O]

Using Equation (2.15) we see that for g € m, <@£f,’g)>

N n-—1

FI%g=3 > > cli)as, ey,

B 1ol
J=1 I=1 |i|=n n—1 I+1

Lemma 2.2.9. Let ¢1,...,9,m € [1(P,.,). Set

Qm(glauwgm): [(1@@)0 TTA+<90®1)O TrAfl](/@gl"'/@gm)'

Assume R > 4, so that £ < % Then

2z
R

m+1 ™

2
HQm(Egla R Egm)“R,a S HAH R2m H ngHR,a~
u=1

In particular, Q,, extends to a bounded multilinear operator on (@éf,’a) with values in gzé,R’U).

Proof. First, foreachu = 1,..., m assume g, € m,, (2., ) and write g, = Zwu)‘:nu cu(@'(“))Xz(u).
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By the computation preceding the statement of the lemma we can see that

N

Tra-(f DEgr - J DEgm) = Z (A pno[Z 2E 9N pops - [ I PGl 1pm

D05---sPm=1
N ni—1 N —1

_ZZ Z Z Z HC ()Ouul)g;;)

ly—1

=1 L1=1 lmn=1 ;D |=n, [i(™) |=ny, u= 1
(1) (1) m) <(m)
X |00 =) e 1?1 "'Zlmflz'(m) [A™] (),
loi(l) L)t lm ]Z(m Z(m) Im W d
ni—1 I1+1 Ny —1" Im+1

where il((?) = j. Hence

(p@1)oTrp-1(f DEg1- I DYgm) ZZ Z ch Ouu D60

Tny
G=1 Uyl 4D j(m) u=1

X QD(XH) - X PONEE X my e X m) )
51 31 YU —1

Y=

-1
X X ('m) : X (nL) : X (1) : X (1) . [A ]Zl(er)]

'm+1 nm 1 ll+1 "1 1
Fix l4,...,l, in the above quantity, then the sum over il((?) and the multi-indices iV, . .., 7™
is a sum of monomials all with the same degree: > n, — I, —1 =: ny. By Lemma 2.2.8, it

suffices to bound ||p*(-)||g for k € {—ng+1,...,—1,0}. For k = 0 we have

(e ©1)oTrams (/9291 - I DVgn)ll g

XY Y [T |40,

3= U e lm §1)j(m) u=1

e (u) A1 N1t A nm—2m z bt
>3 [le ) a5 2

Rnl 1 —1+Fnm—Ilm— 12[1 1+-+ln—1

lseolm (D) 4(m) u=1
m 1 Ny —1 2 lu—1 m 2 m 2
=||A 95 119u - <||A 9 119u =||A o 1Y 2
141 T sl 3 (7) =<l ITT gboulle = 140 T sl

where we have used ||gullr = ||gullg.0-

Next, let k € {—ng+1,...,—1} and suppose

<X<m> e X o Xy - X >

lm+1 nm—l l1+1 n1 1

—X(v)' X(v X(1) . X(l) 01<X(m) . X(m) "'X.(u) '“Xiff))’

a+1 nv—l l1+1 n1 1 lm+l nm—l ly+1
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for some v € {1,...,m} and some a € {l, + 1,...,n, — 1}. The corresponding ¢ output is

@(Xi(m ce Xy e Xy e Xom )
1 1 I —1

Uyt

:go(ai (X X+ Xy o+ Xy ) Ko+ X+ Ko o+ X oo )

Yy—1 Im—1 Y-t ly_1—1

Using Lemma 2.2.8 we can in this case replace Tr(A™'# _# P%qg, -+ 7 P%g,,) with

Te(f D51 I DEg# AT H# (0 @ 0 ) F DEgorr -+ F DEgm))

so that output of p* changes to

X (v) . X (u) . X (1) : X (1) X (m) . X (m . <X (v) *° Xﬁ;})) ,

a.+1 nv—l l1+1 nl 1 lm+1 nm—l lv+1

and the output of ¢ changes to

@\ o; (X.(v) X(v) )X X(m) X<1 . X(1) ‘”X,(vq) X(v 1) .
4 Yy—1 Z1 U —1 -1 5 ly_1—1

Hence it suffices to consider when v = m. In this case we further fix iV, ... i™ 1 and

denote F), := X - Xw and G, = X. FONREED. ¢ . Consider
1

Yu—1 Uyt bpp—1

Z Z Cm 1 Oé (m 1), (m) [A_l]il(m)j

nm
J=1 4(m) '

X(,O(JZ- <X.(m)"'XZ.l(m)71> Fl---F )X(m) X(m) Gl---Gm_l(J‘i (X(m) ---Xigm)>

a+1 'nm 1 lm+1
N
Jj=1 j(m) ggm), ’,Ll =1 l(m)H, ,zf]’” - t;élm
X © (X%(m) e X 5(m) F1 F ) X ;m) - X ;0 G1 Gm 1X;(m) . 'X%(m)
1 lm—l a+1 nm—l Im+1 a

—Z Z Cm (i Oé(:_l) mH (m) (m)90<X<m> Xl<m> Fl"'Fm—l)

XX<m . X(m) Gl'--Gm 1X(m) "‘X;;(m)

a+1 nm—l l,n+1 a
= E Cm Oum D jm) P (X (m) - Xm) Fl"'mel)
1 nm a nm a+1 n7n a+lm—1
l(m)
X X o Xy Gre Gy Xyom) X m),
J1 nm a—1 nm a+Im+1 J”m
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where in the final equality we have used the characterization of the coefficients of elements
of Z.,. given by (2.13). We note that while the multi-index has changed to j (m) there are

still /,,, — 1 terms inside ¢ and n,, — [, — 1 outside. Thus we have

Hpk o (QO X 1)0 TrA_l(/QEgl s /Qng)HR

S Z Z H |c (u) Rnl_ll_1+"'+nm_lm_1211—1+~~+lm—1

..... Im Z( 7_"71(7n)u 1
= Z Z H‘Cu _u) }Rnﬁ AN —2m <z)l1_1+m+lm_l
,,,,, L 11 __j(m) u=1 R
1 ny—1 2 ly—1 m 9
Tl 3 (g) < Il gplllieo <1141 [T 2l
u=1 lu=1 u=1 i

Thus

(o © 1) 0 Tras(F P01+ £ P2gn)l, < Al H 9/l

and similar estimates show
[(p@1)oTra( fPEg1 - F DEgn)ll g, < IIAII T H I gull R,o-

Now let ¢1,...,9m € L., be arbitrary. We note that m,,(g,) € . for each n, > 0

since [p, m,,] = 0. Then since @, is multi-linear we have

[e o]

Qm(zgla"-azgm) = Z Qm (Z'ﬁnl(gl)a---azﬂ—nm(gm))7

and hence
2m+1 m
1Qm(Zg1, - Sgm) e < D Al T H 17 (9u) | R0
N1 yeees T,
2m +1 m gm+1 m
Rgm H Z 70, (gu) o = Al R2m H 19ull R0
u=1n,=0

Thus @Q,, extends to a bounded multilinear operator on 4@8(?,’0). That @,, takes values in

28 follows from Lemma 2.2.8. O
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Lemma 2.2.10. For f,g € P get Qm(Xg9) = Qm(Xg,...,Xg) and assume R > 4. Then

2m+1 m—1

1Qm(X9) = Qu(EN)lpo < 1Al 5z D Mgl IS 1S = gl
k=0

2m+1

In particular, ||Qm(29)l ke < |Al Fz 9170
Proof. Using a telescoping sum we have

||Qm(2f) - Qm(zg)HR,a

m—1
=D _Qn(Sg,....Sg.2f ... .Sf) = Qu(Sg, ..., g, Sf,...,Lf)
k=0 ‘kr mtk krl m:g—l R,
m—1
< 1Qm(Zg, ... 29, 2f —Xg,2f,....5f)|ro
— —_——
k=0 k m—k—1
s k k-1
< 1A D Nallo LA NS = llro-
k=0
O
Lemma 2.2.11. Assume R > 4. Let g € 2557 be such that lgllre < %2, and set
QEg) =) D G (S0,
m+ 2
m>0
Then this series converges in || - |go. Moreover, in the sense of analytic functional calculus

on My(W*(Z @ P, ¢ ® ¢)), we have the equality

Qg) =[(1®@p)o Tra+ (¢ @1) o Tras]{ F IXg —log(1+ F I%g)} .

Furthermore, the function Q satisfies the local Lipschitz condition on {g e p ). lgllro < R2/2}

o < f — JllRo - R 1 |
||Q< g) Q(Ef)HR’o' || || ) R2 (1 M) (1 M)
) - R2 ’
and the bound
4”AHHQH%U
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Proof. Let £ = R?/2 and A\ = ||g||po. From Lemma 2.2.10 we know ||Qni2(X9)||rs <

2||A|l (%)mH. Since A < k, the series defining () converges. The functional calculus equality

then follows from log(l +z) = =3 -, (’Z)m. Finally, since m + 2 > 2 in our series we

obtain

1Q(S9) = QSN e <3 —— [ Qms2(59) = Qusa(S) s

=om + 2
m+1
<IF = gllrall A DY w2l flms " gl
m>0 k=0
< Hf N || HA” ZZ -1l l —k k1
< g Ro™ = Kk ||f||R,a’f ||9||R,a )
>0 k>0

where we have written m = [ + & — 1 which is non-negative so long as [ and k£ are not both

zero. Using || fllro, [|9]|ro < & We see that

Q by - Q 2 o S - o —1
H ( g) ( f)HR7 Hf gHR7 R2 (1 _ Z‘I-fj‘gfal'f) (1 _ 2“9122}%’(7)

Setting f = 0 yields the bound

2[Al_ 2llgllz.o 41 Allllgl 7o

Sme < 9l ro _ ,
||Q( g)HR, = HgHR, R2 R2— QHQHR,o R4 — QRZHQHR,U

as claimed. O

The proof of the following lemma is purely computational and left to the reader.

Lemma 2.2.12. If f = Dg for g € QéR’”) then

Ao i(f) = f. (2.26)

Moreover, if g = g* then

Z (% /UX-l#f#f) = Jof# I XTHE = F FHT. (2:27)

Lemma 2.2.13. Suppose f) = @%g; with g; € P, fori=1,2. Then (1+A)#fV#f2) ¢
P,. Furthermore,

IN||A|
o+ 0% < 2 ool
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Proof. From (2.26) it is easy to see that (1 + A)#fW#f? € 2, Now, write g
Dt 2jijem C1(H) X and go = 3777, Zm:n ca(j)X;. Then (2.15) implies

f;l) = Z OzjaC1(Z' a)X; and fz‘(Q) = Z Z aibc?(i' b)Xl

Hence

oo N N
(14 A)#fO# @ = Z Z [1+ Al Z Z ajaipc1 (i - a)ea (g - b) X X;.

m,n=11,j=1 a,b=1|i|=m—1
\l\zn—l

It suffices to bound ||p*(:)||g for k € {—m —n +1,...,0}. First, for k = 0 we simply have

N 00
I+ A#fORFON < DTN+ AL D> D Jali-a)e(j-b) R

1,5=1 m,n=1 |i|l=m—1,a
l7l=n—1,b
1 (o , )\ [~ B
Mg (S o) (32
m=1 i.a n=1 7b
2N Al

< Ji2 911l R, |92 Roo-

For —m + 1 < k < —1, we further fix 7, j, a,b. Then using (2.13) we have

||£‘1||:=TZ:11 li] |7l7‘l ]Z 1
lj=n—1

Thus

N

Z Z[l + Ay Z Z Qa1 (i - a)c(j - b)p* <X1X1>

ab=1 |ij=m—1
u‘\:n—l

00 N

<y 211+A”|qu i)ea(f)| R

m,n=11,j5=1
|J|

(1+||AH (ZZ‘Q i-a |Rm> Z 02j b
m=1 1,a

n=1

< 2MIAL o eoliael
=T Rp2 91||Rc1192||R,0-
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The cases for —m —n + 1 < k < —m are similar after using o;(¢g1) = g1. Thus the claimed

bound holds. N

Lemma 2.2.14. Assume R > 4. If f = 9%qg for g € 227 with lgllre < S and
W e 257, then W(f) € 2 with

WPl < L+ 141

Wl so-
< L ws

Furthermore, if f9) = @%g; for g; € P57 with ||g;|| e < S, j € {1,2}, then
N+ Al + IA])
W () =W ()| gy < Z 10;(W)ls@nsllgr — gallro-

Proof. We will first show that for each j,k € {1,..., N}, n>1,and 0 < s <n — 1 we have

N(1+||A
< A )l

R

N
Z (1® [o-; oms]) 0 6;(mn(fi))#X;

Note that 7, (f) = ZE7m,41(g) and so we observe that Lemma 2.2.1.(iii) implies

180D bm() =3 [#} (197003 ()

(Lemma 2.2.1.(iii) was only proved for Y = 2G with G self-adjoint, but it is clear that the
same argument for a non-self-adjoint element yields (_#,2G)* = (9 ®1)(_#,2(G"))). Now,
suppose for each ¢ € {1,..., N}
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Then

D (1@ [o_iom]) o d;(ma(fi)) #X; = Z(l ®ms) (L ® o) 0 d;(mn(fi))) #X

N
1+ A )0
=Y [ aem@mi#x
Jl=1 jt
N <
=2 > D al) [—} Xz‘l"'Xz‘s®Xz‘52"'Xin] #X;
jye=1 [ Lf n>0 |i|l=n 1+4 ist1k ’
N
. 2 Xo+ [AX], .
=D, ' co(2) [H—A] . kaz e X, (T) Xiy -+ X,
{=1 n>0 |i|=n Ts+1

Recall that

‘ <1 and ||[AX]/||r < ||A||R. We then have

<ZZZ|@ )R- (HQ“AHR) R

= 1n>0||

[1+A

N
Z (1® [o_; oms]) 0 0;(mn(fi))F#X;

1+ A Y144
o> B A ot = 3 B4 9, )
(=1

= /=1
_ N(L+A])
2R

N+ Al
I1mnr1(9)lre < ——oTs1(9)llro,

where we have used Lemma 2.1.7 in the second to last step.

Now, suppose for some n € N

W= b(i)X; € Pes,
li|=n

for b(i) € C. Then by (2.12) we have

Since f = ZXg, we know from (2.26) that o_;(m,;(f)) = mx,;([A#f];;,) and hence W (f) €
@éR):

|i|]=n
=3 ST bDAG L =Y b =W ()
lil=n |j]=n lil=n
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Thus

W (Hre = max ||p"(mar (W (f))) | -

0<t<M-—1
>0

Fix M >1and 0 <t < M — 1. We have

AW =D D b@p (mw (fi) - (fin)-

lij=n k1 +-+kn=M

For fixed ky,. .., k, there exists a € {1,...,n} such that

kopr +- ko <t <kg+---+kp, or 0<t— (kas1+ -+ k) < ke

J/

=8

Since f = Z%g, we know from (2.26) that o_;(m,(f)) = mx,([A#f];,). Hence we have

Zb 7Tk1 le Trk'n(fln))

= > b D () - (i)

= > b0t | D AG Ok (fo) - 7wy (fon )Ty (fir) -+ 7, (fi)

= =
= Z b(ﬁ : Z)ps (ﬂ-ka+1 (fel) T ﬂ-kn(fznfa)ﬂ-kl (fll) o 'Wka(fia)) :
|il=a
|¢|=n—a

Since || - || g is invariant under cyclic rotations (provided there is a consistent degree rotated),

we can instead consider the above after ¢ rotations which we note is
N

Z b Trkl fn) ﬂ—ka(fia) <Z<1® [O-—ioﬂ-SD Oéj(ﬁka(fia»#Xj) Wkaﬁ»l(le)..'ﬂ—kn(fenfa)'
|Z| n a o

So the inequality from the first part of the proof implies

(1+ Al
e mlas Y 3 b o A @)l i (0
kitetkn=M |il=a
fi=n-a
N1+ ||A .
<D S bl Y Irnn@lee - I @)z,
li|=n it tkn=M
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and hence

W)l < TELIAD Zrb I Y e @lae - I (@)l o

M>0 k1+4--+kn=M

N+ Al N+ Al N+ Al

<—— Z b@Dllgllz, < ———IWls = ————[Wlls,-
8 i 8 8
Then for more general W of the form
w=> >0
n>0 |i|=n
we simpy have
N( + N+ [[A[) N+ [1A]D
W re < D ImaW)(N)lRe < Z I (W)llse = ——g— [Wlls,-

n>0 n>0

Finally, if fU) = 2%, for g; € 27 with ||g;||r < S, 7 € {1,2}, and W is of the form
J J J

W=>"> o)X

n>0 |i|=n

we have

WOy = @) =3 o) (1 - 1)

n>0 |i|=n
=> > W Z X)(FO, fON #(rM - 12),
n>0jj=n  j=1

where &;(X;(f, f#) means the X; to the left of the ‘®’ are evaluated at X = f() and the

X to the right are evaluated at X = f (2. Then the same estimates as above yields

WD) = WD)y < MZZ b(@)IS™ g1 — g2l

7j=1 n>0

N(1 + N+ AlD
Z||5 Nse.sllgr — g2llro-
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Corollary 2.2.15. Assume R > 4. Let g € 2L and assume that lgllre < %2. Let
S >R+ %2 and let W € 2. Let
Flg) =~ W(X + #%) — 1 {(1 + A)# 759} #2%g
+[(1®p)o Tra+ (p®1)o Try-1]olog(l+ £ P%g)
=~ W(X + 75g) ~ { {(1+ A#P%g) #75g
+(1@@)o Tra+ (p@1) o Try] (F Z%g) — Q(Xg).

Then F(g) is a well-defined function from 28 1 @&R’U). Moreover, g — F(g) is locally
Lipschitz on {g: ||g||lro < R?/2}:

1£(9) = F(Nllre

2||All 1
< - o 1 _ o o
— ||f g||R7 R2 (1 2||fHRO‘> (1 _ 2||g||R > + + 4 (||g||R7 _I_ ||f||R7 )
R? R2

—i— A
N A Zna Vo b

and bounded:

241, 2141, N4l
F o < o R
IF@lro < gl {RQ_ZHQHR e lolln

—i— A
N A Zua iso.s }+||WHRJ.

In particular, if

R=4/|All,  0<p<l

Wik < ’ (2.28)
Zj |’5J(W)H(R+p)®w(R+p) < N(l—i}llAH)

then F takes the ball

Bri={g€ 207 glna < 4

29



to the ball

E2 = {g € f@é}%a)

Hlgllro <

and is uniformly contractive with constant \ < % on Ey.

Proof. Once we observe X + %G = 2%(AN (V) + Gg), Lemma 2.2.14 implies that W (X +
Thus F(g) € 28 follows from Lemmas 2.2.8 and 2.2.13 and W (X +

7%9) € 2I.
7%9) € I

Lemma 2.2.14 also tells us that for f,g € 90(?,’0)

1+ Al))

|W(X + 2%g)

WX +Z0f)|pe <

while Lemmas 2.2.10 and 2.2.11 imply

1

v

N

(1 . 2“-?%”2}3,0) (1 _

1

2|lgll 7.0

R2

)

1Q(Xg) —
2||A
< If — gllas 2]
2||A
— 1~ gl ]

and finally Corollary 2.2.13 yields

<1 o 2”.};4'2}3,0') <1 _

2||9HR,0‘

R2

>+1

HHQ + A#T50) #259 — {01+ A#TE]} #75|n

< 10+ A#a5(g - 1)} #759,

12NHAII 12N 4]
S 4 R2 Hf gHRaHgHRa 4 R2
_ N|A
= 200F ~ sl + £ lns).

Combining these three estimates yields the claimed bound on || F'(f)

on ||F(g)||r.e then follows from the above and F(0) = —W (X).

60

—s sl = gllre

with HfHR,0'7 Hg”R,sigma < %2 we have

Wllss.sllf = gllro,

QENre +[[(T® @) o Tra+ (¢ ®1) 0 Tra-1] (JZE(g - f))“R,a

+ HAH Hf 9llro

I i {A+ A#ZSfY #9259 — Dlps

—F(9)|lro- The estimate



Now, suppose (2.28) holds and let f,g € E;. Note that R > 4 and || f||ro, [|9llre < v <

1
N
1. Hence the Lipschitz property implies

IF() — F@)lle < I — gllao {g (% it %) ; é}

8 5

1
+ o} < 31~ ol

—1f = ol { 35 + 3¢

The bound on F' then implies

F U<_ - _ — — —_— < — AT T Ao
I (g)HR,_N{7+8+32+8 TaNTaN AN TN

and so ' maps F, into Ej. O
2.2.5 Existence of g.

Proposition 2.2.16. Assume that for some R > 4./||A|| and some 0 < p < 1, W €
P00 < P und that

Wleo < (2.29)
22 10 W)l (B+py@n(rrp) < m
Then there exists g and g = Xg with the following properties:
(i) §.9 € PLE°
(ii) g satisfies the equation g = S11F(g)
(iii) g satisfies the equation
1
Ng=S1|-W(X + 2g) — 1 {1+ A)#Dg} #Pg (2.30)

+[(1®@p)oTra+ (p®1) o Try-1]olog(l+ /@Eg)} ,
or, equivalently,

N1 @¢)o Tra+ (p®@1)o Tra-]( FPg) — Ng (2.31)

=X+ 20) 4 QM)+ (14 420} #79 }.
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(iv) If W = W*, then g = §* and g = g*.

(v) g and g depend analytically on W, in the following sense: if the maps B — Wy are
analytic, then also the maps 5 +— §(B) and § — g(B) are analytic, and g — 0 if
IWllgo — 0.

Proof. We remark that Equation (2.30) is equivalent to
Ng= SUF(Ng),

with F'as in Corollary 2.2.15. Under our current assumptions, the hypotheses of the corollary

are satisfied. We set go = W(Xy,...,Xy) € E; and for each k € N,
gk = yHF(gk_l)

Since I’ maps into c_@ff"g), on which .1l is a linear contraction, and .#I1Ey; C FEj, the final
part of Corollary 2.2.15 implies that .ZIIF is uniformly contractive with constant % on F;
and takes E; to itself. Thus g, € F; for all k£ and

.. . . L. .
96 = ge-1llro = IS IE(Gr—1) = LSTE(Gr-2)llry < 5lI0-1 = G20

implying that g, — ¢ in || - ||rr, With ¢ a fixed point of #IIF. We note that § # 0 as
SLIF0) = LI(W) =W # 0. Since g € 259 e also have g := $§ € 27 This
proves (i) and (ii), and (iii) simply follows from the relation § = .#'¢g and the definition of
F.

It is not hard to see that for h = h*, LIIF(h)* = ZIIF (h). Hence if we assume gy = W
is self-adjoint, then each successive g, will be self-adjoint. Consequently so will their limit ¢
since || - ||g (which is invariant under %) is dominated by || - ||gr. It follows that g = Xg is
self-adjoint as well.

Assume [ — Wy is analytic. Then each iterate gp(f5) is clearly analytic as well, and

the convergence to ¢(f) is uniform on any compact disk inside || < fp. Thus the Cauchy

integral formula implies the limit g(5) is analytic as well, and clearly so is g(8) = 3g(5).
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Finally, we remark that ||¢||g» is bounded by |[|[W | r,. Indeed,

19 —=Wlro =119 — dollre < 2[[91 — ollro

. 1 .
<2 ({1 {3} + 1Wla] + Naoles ) = 5107 e,

or ||9llre < 6||W{lgr,e. Since ||g9]lre = 1X3]lre < |G||lr,0, it follows that g — 0 as |||z, —
0. Il

Theorem 2.2.17. Let ' > R > 4\/HT Then there exists a constant C > 0 depending
only on R, R, and N so that whenever W = W* € 25T satisfies Wllrs10 < C, there
exists f € 2T which satisfies Equation (2.23). In addition, f = Pg for g € P The
solution f = fw satisfies ||fwl|lr — 0 as |W||g 410 — 0. Moreover, if Wy is a family which

is analytic in B3 then also the solutions fw, are analytic in 3.

Proof. Fix S € (R, R'). Using the bounds in the proof of Theorem 3.15 in [GS14] we have

N
Z 16; (W)l s+ 1)@(s41) < (S + 1, B+ D[ Wlla1,

where

c(S,R) =supaS~'(R/S)™™
a>1
Also, S < R’ + 1 implies |W||ss < ||W | g+1.0. Hence, by choosing C' > 0 sufficiently small,
|W||g41.0 < C will imply the hypothesis of Proposition 2.2.16 are satisfied with p = 1 and
R replaced with S. Thus there exists g = g* € 250 satisfying (2.31). Let f = Zg, then
from Lemma 2.1.7 we know f € (,@(R))N. Also, using the bounds from the proof of Theorem

3.15 in [GS14] again we have

1.7 fllrs.r < (R, S)llglls = ¢(R, S)llglls.0,

where

d(R,S) =supa’R *(S/R)™®

a>1
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Hence by the proof of Proposition 2.2.16.(v) we can (by possibly choosing a smaller C)

assume || _# f|lre,r < 1. Also, it is clear that g € P 5 P&

Recall from Lemma 2.1.8 that 2.11 = 2 on 32573’0). Hence applying & to both sides of
(2.31) yields

Z{l(p@1)oTrar + (1@¢) 0 Tra] (F Zg) — A g}

= WX + 79) + 2Q(a) + 7 ( {1+ %29} #9).

The final term is equivalent to

7 G @+ A)#29) #@g) =2 (%/axl#f#f) = JI#] = Fol# I X #].

where we have used (2.27). Thus f = Zg satisfies Equation (2.24) which, according to

Lemma 2.2.7 is equivalent to Equation (2.23).

The final statements follow from Lemma 2.1.7 and Proposition 2.2.16.(v). O

2.2.6 Summary of results.

We aggregate the results of this section in the following theorem.

Theorem 2.2.18. Let (M, p) = (Mo, pv,) be a free Araki-Woods factor with free quasi-free
state o corresponding A, and generators Xi,...,Xn € M so that the matriz form of A
with respect to the basis {X;Q}}L, is given by (2.2) and (2.3). Let R > R > 4/]1A]l.
Then there exists a constant C' > 0 depending only on R, R', and N so that whenever

W =W+ e @&+ satisfies ||W||ri11.0 < C, there exists G € PR o that
(}/1?7YN) = (glGa 7-@NG) € t@(R)

has the law @y, V = %Z?’[k:l [#}jk X X; + W, which is the unique free Gibbs state with

potential V.

If R > R||A||% then the transport can be taken to be monotone: (0% ® 1)( F-2G) >0
as an operator on L*(P @ PP, o @ oP)N.
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In particular, there are state-preserving injections C*(¢y) C C*(py,) and W*(py) C
W*((:OVO)'

If the map B — Wpg is analytic, then Yi,...,Y, are also analytic in B. Furthermore,

Y: — X,||r vanishes as ||W || g+1.0 goes to zero.
J J +1,0 9

Proof. Note for Y; = X; + f; we have ||Y;|| <2+ f;||z. By requiring C' be small enough so

that ||f;||r < 1, we have that
[p(v))] < 34,

So by Theorem 2.1.14, and further shrinking C' if necessary, we see that (y is the unique free
Gibbs state with potential potential V. The only remaining part of this theorem not covered
by Theorem 2.2.17 is the positivity of (0,2 ® 1)(_Z,f), so we merely verify this condition
when R' > R||A|3.

Recall from Lemma 2.2.1.(iv),

(0: @ 1)( 7o f) = Aigh(o:s @ 0_0)( Fof)#ATT.

Hence if ' = ||A||3 R then

los ® V(ZoDllrs.r < I1AHPNo: © 0_ )2 Dllrs.rll o X s x

4

1
< ATPILI fllsre.s | FoX | renr-

Thus in the proof of Theorem 2.2.17 we can choose S € (5, R') so that || _Z fllss.s <

(5, 9)|glls,o- In particular, we can make || 7 fllsg,s < |A%]|72 so that

lo: @ D(Zof)llremr < | o X o r-

Noting that (U%‘ QU ZY)= _Z,X + (U%‘ @ ) Iof), FoX >0, and (Ug @I f) =
(a% ® 1)(_Zsf) (via Lemma 2.2.1.(iii)) we have that (0‘% ®1)( Z,Y) > 0. O

By shrinking the constant further if needed, we can use Lemma 2.1.10 to turn the state-

preserving injections into isomorphisms:
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Corollary 2.2.19. Let (M, ) = (M, pv,) be a free Araki-Woods factor with free quasi-free
state @ corresponding A, and generators Xy,..., Xy € M so that the matriz form of A with
respect to the basis {X;Q}, is given by (2.2) and (2.3). Let R > R > 4y/||A]l. Then
there exists C' > 0 depending only on R, R', and N so that whenever W = W* € QZ(EE_IH’U)

satisfies |W || r11.0 < C, there exists G € P8 50 that:

(1) if we setY; = 9;G, thenYy,...,Yn € P8 has law oy, with V = %ka:l [%L’k Xp X+
W;

(2) X] = Hj(%? .. ;YN) fOT some H] -~ ,@(R); a/nd

(3) if R' > R||A||7 then (0% ®1)( Z2,2G) > 0 as an operator on L*(P @ PP)N.
In particular there are state-preserving isomorphisms
C*(ev) 2T(Hr,Us),  Wi(ev) 2 T(He, Up)".

Proof. By Theorem 2.2.18, it suffices to show the existence of H = (H,..., Hy) € (2N,
From Theorem 2.2.17, we know that Y = X + f(X), and that ||f|[z — 0 as |W| 41, — 0.
In fact, from Lemma 2.1.7 we know that f € (2N for any S € (R, R'), and ||f||s still
tends to zero. Set S = (R+ R')/2, then by shrinking the constant C' in the statement of the
corollary further if necessary, we may assume that hypothesis of Lemma 2.1.10 are satisfied.

Thus we obtain the desired inverse mapping H(Y) = X. ]

66



CHAPTER 3

Free Araki-Woods factors

We saw in Theorem 2.1.13 that g is the free Gibbs state with potential

N

ho 2 [
j.k=1 Jk

In this section we will show that for small |g|, ¢, is the free Gibbs state with potential
Y1+ 4
_ (9) y(a) (R,0)
V——g [ 5 ]Xk X7+ We P,

2
gk=1 ik

and that ||W||go — 0 as |¢| — 0. Hence it will follow from Corollary 2.2.19 that M, = M,
for sufficiently small |g|. We now let M = M, for arbitrary (but fixed) ¢ € (—1,1), with the

usual notational simplifications.

3.1 Invertibility of =,

Let W: MQ — M be the inverse of canonical embedding of M into F,(H) via z +— 22 for
x € M, which we note is injective from the fact that (2 is separating. Hence for £ € M)
we have that ¥(¢) is the unique element in M such that U(£)Q2 = . The uniqueness then
implies the complex linearity of ¥: W(> &) = > .0, ¥(&). We also note that by the

formulas (2.1) we have

U(SE)Q = 56 = S(V(E)Q) = V(€)' and
T(AFEQ = A% = APT(E)A7Q = 0, (T(€))2, (3.1)

so that the uniqueness implies W(S¢) = W(£)* and W(A%¢) = 0, (U ().
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Recall that =, = ) ¢"P,, where P,, € HS(F,(H)) is the projection onto tensors of length
n. We claim that (3.1) implies each P,, when identified with an element in L*(M@M?P, p ®
), is fixed by 0y ® o, for all t € R. Indeed, fix t € R and let {;}i=, be an orthonormal
basis for H®". Then P, is identified with 37, _, W(&) ® W(&)* since for n € Fy(H)

> AU, VEQ =D (Eumy, & = Pan

|i|=n lil=n

Now, using (3.1), we see that

(ru @ 0u)(P) = 3 WA @ W(ATE) = 3w (A7) g) @ w ((4)™¢) .

|i|=n

i|=n

Let Q, € HS(F,(H)) be the element associated with (o; ® 04¢)(F,,). That is, for n € F,(H)
we have

Qun=Y_ (4" &), (A7) ¢

jil=n N

and so

(" &@um), =30 ((4) " &)
’ |

AT g (a7
il=n 4

Ve
< (At)®n i n>U,q <§i’ éz‘> Ug - <(At) . & T]>U,q

1|

- <(At)®n & Pn77>

n

U,q .
From Lemma 1.2 of [Hia03], A* > 0 implies (4)®" > 0. Thus {(A)*" fi}m:n is a basis for
H®™ and hence P, = Q,, = (0 ® 0)(P,) as claimed.

It follows that for any ¢ € R we have (0 ® 04)(Z,) = =4, and more generally

(Uit & Uis)(Eq) = (Ji(tfs) &® 1)(Eq) = (1 (059 O'i(sft))(Eq) Vt, s € R. (32)

We remind the reader that the norm || - ||gg,r is defined in Section 2.1.5. Denote the
closure of & ® Z°P with respect to this norm by (& ® @Op)(R). We now prove an estimate

analogous to those in Corollary 29 in [?] for the non-tracial case.
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Proposition 3.1.1. Let R = (1 + %) 1%‘(1' > || X;|| for some ¢ > 0. Fiz ty € R, then for

sufficiently small |q| and all |t| < |to|, (62 ® 1)(E,) € (Z ® 22°7) B) ith
[AI(3 + )*(1 + [[A[DN?]q|

i H(=,) —1 < = ,N,A,t .
Mo @ D) = Hnen = 5 =0y a0+ ANy g~ Y

Moreover, m(q, N, A,t) — 0 as |q| = 0 and w(q, N, A, s) < mw(q, N, A, t) for|s| < |t|. Finally,
for m(q, N, A, to) < 1 and [t| < [to], (0s @ 1)(Z,) is invertible with (o; ® 1)(Z,) "' = (04 ®
1)(E" € (2@ 2% and

. m(q, N, A, t)
(o @ 1)(E;") = 1| g < 1—7(q, N, A,t)

— 0 as|q| — 0.

Proof. We first construct the operators W(&;) =: r; from the remarks preceding the proposi-
tion (for a suitable orthonormal basis). However, in order to control their || - || g-norms we
must build these operators out of {W(e;)} since this latter set is easily expressed as polynomi-
als in the X;. Indeed, for a multi-index j = {ji,...,jn} let ¢; € & be the non-commutative

polynomial defined inductively by

Vi = X\ Vjgjn — qu_Q (€0 €300 Vi, i (3.3)

.....

where 1y = 1. From a simple computation it is clear that 1); = ¥(e;, ® --- ® ¢;,).

Fix n > 0, then, following [?], we let B = B* € My»(C) be the matrix such that
B% = TN <Pq(n)_1). In other words, given hq,...,h, € H if we define g; = Zm:n B; jh;
then

<gz= 9j>U7q = <hza hj>U70 = ﬁ (hiy hj )y -

Define p; = lel=n B; jib;. Then the p; satisfy

<p1, pj>¢ B <piQ’ij>U,q - <ei’ €j>U,0'

Let o € My(C) have entries a;; = (e;,€;);;, and recall that by a previous computation
this implies a = 1%4' We note that the eigenvalues of a are contained in the interval
[m, W} Lemma 1.2 in [Hia03] implies that a®" is strictly positive, so let D =

D* € Myn(C) be such that D? = (a®")"".We claim that ||D?|| < <%> . Indeed, it
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suffices to show that the eigenvalues of a®" are bounded below by (m) . Suppose A is
an eigenvalue with eigenvector hy @ -+ ® h, € Hg". Upon renormalizing, we may assume
|hi]| = 1 for each 4. Thus
2 n
A= <h1 ®...®hn,a®nh1 ®'-'®hn>10 = H(hz,ahﬁ > (m) ,

%

and the claim follows. Setting r; =, D; xpj. we have

<Ti’7"i> =Y DixDji(pe: 1), ZDE? i1 (eks €) g
©

2 \™"
= ; DEaZDii < (1 T A_1> €k, €l> = Z Dii

1,0 kL k1l

= Z Dlvl |:Oé®n:|LE D&i = [DOd®nD]i£‘ = 6121

Noting that 7; is a linear combination of the 1; with |j| = n, we see that r;Q0 € H*". Hence
{riQ})ij=n is an orthonormal basis for H*" and P, can be identified with >, _ r ®r; €
PR PP

Repeat this construction for each n > 0 so that for a multi-index i of arbitrary length we
have a corresponding r; and consequently a representation of P, in & ® & for every n.
Then by definition we have =, = ano q" Zm:n r; @ r}, provided this sum converges. Let
Cn(t) = supj;—y, l|loit(¥:)|| r, then we have

Soutderi|| < Y |PuBiDuBen| lloal e
lil=n Reo. R biklm
< |(BD’B) | Cu(t)Ci(0)
m,l
< N*|| BD*B|Co(t)C4(0)

< (LA e,

o (14 A" =~ !
<N (—2 )( H w) Co(t)Co(0),

=1
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where we have used the bound on ||B?|| from [?]. From Equation (3.3) and (2.6), C,,(t) <
|AT X ||gCr1(t) + Cra(t) /(1 — |q]). But ||AT'X||gr < ||[A7TY|R = ||AY||R (see property 4 of
A in section 2.1.1), so that C,(t) < || A"|™ (R+ - M) = || A" (ﬂy Also, we use the

1—|q|
bound

(1 o ’(JDH 1+ ’CJ|k < (1 — |Q|)2

_ k — _ )
1 —lql 1 —2|q|

from Lemma 13 in [Shl09]. Thus

1+||A||) ( — |q)) ) 3+c\™
oi(ri) @r; §N2"( A"
; t( ,) (3 1 2|| || 1_|q|

(3

1

L‘i R®7rR

— [HAtHN21+ 1Al +c)2r
2|q]
Thus choosing |g| small enough so that
1+ [|A] (3 2
ljaeyt JAIGE Ty
2> 1-2g

we can use [|A']] < ||A%]| for |t| < |to| to obtain
1+ ]A4] 3+ ¢)2]"
2 1-2)
_ A" (3 + ¢)*(1 + [|A])N?|q]
2= 4+ A B+ c)*(L+ [[AIN?) |q]
The limit 7(q, N, A,t) — 0 as |¢| — 0 is clear from the definition of 7(q, N, A,t), and the

loa @ DE) — 101y g <Y {quIAtW

n=1

ordering 7(q, N, A, s) < w(q, N, A, t) for |s| < |t| simply follows from [|A%|| < ||AY||. The final

statements are then simple consequences of the formula £ = >~ (1 — z)™ O

Remark 3.1.2. We note that (¢, N,1,0) = (g, N?) in [?].

3.2 The conjugate variables ¢;

Recall that 6, = 0,®05s. We will show that 8§q)*o6_i ([E;l] *) defines the conjugate variables
for 9;, but first we require some estimates relating to 0](q)*

Fix ¢ > 0 and let R = (1 + 2) I_L‘ql. For now, we only assume |q| is small enough that

2
2, € (2 @ 20,
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Lemma 3.2.1. For each j =1,...,N, the maps (p®1) 08@ and (1® p) 05(.(’) are bounded
operators from PR to itself with norms bounded by = |q| 12|l rer - Consequently the maps
mo(l®e®1l)o (1 ® 8(-q) + 5](-q) ® 1) are bounded from (2 @ 2P\ to 2B with norm

bounded by 2= M 12|l rRer -

Proof. Recall that ¢ is a state and || X;|| < I_H and therefore ¢ satisfies (2.25) with Cy =

T For P ¢ 2% write P = >_; a(i)X; and denote [|Z4]|rg,r = Qo. Then

"(g&@l)oa§Q)(P)”R— Z p@l) ZO‘%J i Xig oy ® Xy Xay #24

i

g;mmgg
-3 'G(Z)'RMQ‘); (ihs)

< Z iR 1Q01;

T T4e/2

= [[Pl[rQo

R

92 k—1
I |q|) RnikQO

11+4¢/2

= 1Pl o7

1 —|q|
—

The estimate for (1 ® ¢) o 5](9) is similar.

Define (P ® 1) to be left multiplication by P on £ and define (1 ® P) to be right
multiplication by %MQo_l(go ®1)o 6J(-q)(P) on B Let Q € P @ P, then by the above

computations and the definition of || - | gg, g We have

[meereneaes @] = @i, < "~ 1Qln.x

Similarly, [[mo (1® p® 1) o (5](-‘]) ®1)| < QOI%M and so the final statement holds. O

Now let |g| be sufficiently small that 7(g, N, A,—2) < 1. Then by Proposition 3.1.1 and
the statements preceding it, 6;(Z;") = (02 ® 1)(Z;") and (0; ® 1)(Z") exist as elements of
(2 © 27) B as do their adjoints 6_; ([Z,']") and (0_;®1) ([E;']7). So by the preceding
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lemma the following defines an element of 2" for each j =1,..., N:

&=l 1) ([E,']) #X; (3.4)
—mo(1®p®1)o (1 @ + 3 @ 1) o (o ®1) (2,1, (3.5)
and
2(1 —
e < 1io: © 1) (27 g B+ 2 AL 12 00 1) G e 6)

Now, using (2.10) we see that
0 00 ([5,1]) =rs @) ([571]) #X,
—mo(1®p®a_;)o (1 ® 3"+ 0" @ 1) o (o ®1) ([Z,']),
which is equivalent to &; defined above. Hence
(. P) = (6.4 (2,1, 87(P)) = p @ o7 (1 (5,") #0,°(P))
=27 (B (P)#E,") = 0 @67 (9,(P) = (10 1,0;(P)).

Thus §; = 97(1® 1) is the conjugate variable of X, ..., Xy with respect to the o-difference
quotient J;. It also holds that &; = ;-

(&, P) = ¢(0i(P)§;) = (&, 0-i(P)) = p @ ¢*?(; 0 0_i(P*))

= ® ¢ (0;(P*)) = p ® ¢ (9;(P)) = (&, P).

We remark that this could also be observed directly from the definition of ¢; in (3.4) using

a combination of (3.2) and the fact that =} = Z,.

We claim that there exists V € 27 c M such that 2;V = ;. We first require a
technical lemma which will lead to what is essentially the converse of Lemma 2.2.1.(iii) in

the case Y = (&1,...,&N).

Lemma 3.2.2. Let &,..., &y be as defined above. Then for j k€ {1,... N},

(&) = (1@ o) 0 0;(&)° (3.7)
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as elements of L*(M@MP, o @ ). Furthermore,

= 3 Al (3.8)

k=1

Proof. Tt suffices to check

(0:(&),a®b) ={((1®0_;) 0 0;(&)°, a®b)

for elementary tensors a ® b € L*(M@M?, p @ ©°). So using (2.9) we compute

(O1(&)), a ® b) =p(&a&ro-i(0)) — (&jal(p ® ;) 0 F(D)]) — w(&§[(1 @ ) 0 Tp(a)]o—i(b))
= (05 ((0-:(0) ® )") . &) + p({a*[(p @ 05) 0 95 0 0:(b)]} " &)
{1 @) 0 ;(a")]b"} &)
p([(p ®1) 0 9(a)][(p ® 0—;) 0 Ok (b))
p(al(1® p) 0050 (p®a_;)ody(b)])
p([(p®1) 0050 (1®p)odh(a)lo—i(b))
p((1®¢) 0 (@)1 ® ¢) 09 0 0_i(b)]).

We note that

(P*&) = (&, P) = o ® @ (01(P)) = ¢ @ 9™ (0x(P)T) = ¢ @ ¢ (0(P)).
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Applying this to the second and third terms in the above computation yields

(Ok(&)),a®b) = (5 ((0-s(0) @ a)") , &)

+ 0@ ¢"(O{[(0: ® ¢) 0 ;0 0_i(b)]a})

+9 @ " (O:{bl(¢ ® 1) 0 9;(a)]})
[(p®1) 00;(a)][(p ® o) 0 By(D)])
al(1® )0 djo(p@0oy)odyb)])
[(p®1)00;0(1®p)odk(a)o_i(b)
[(1® ) 0 Ou(a)][(1® p) 0 0; 00_4(D)])
= ([o-i(b) @ a]', 05(&))

+o([(p@1)0dyo (0@ p) 00 00i(b)la)

#(
i
#(
w

—p(a[(1®p)od;jo(p®@a_;)od(b)])
+ o(b[(1 ® @) 0 Ok 0 (¢ ® 1) 0 9;(a)])
—¢o([(p®1)0d;0(1®@¢)odk(a)o_i(b)).

Now, applying (2.6) to the second line in the last equality above yields

p(l(p®1) 0 (O ®¢) 0 9;(b)la) — ([(1 @ ) o (v ® 0;) 0 Tg(b)]a).

This is zero if (p ® 1) 0 (O @ p) 09; = (1 ® ) o (p ® 9;) o Oy, but this is easily verified by
computing on monomials. Finally, the final line in the last equality of the computation is

equivalent to

p(b[(1®¢) 00k o(p®1)00i(a)]) — (bl(¢ ® 1) 0 0; 0 (1® ) 0 i(a))).

This is zero if (1®p)o(p® ) 0d; = (p®1)0(d; ® ) 0 Jy, but again this is easily checked

on monomials. Thus

(O(&5),a @ b) = ([o-i(b) @ a]',0;(&)) = ¢ © ¢ (a @ _;(b)#;(&))
=p®p”P((0;®1)00;(&)H#a®@b) = <(1 ®0_;)00;(&)%a® b> ,
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showing (3.7).

Towards verifying (3.8), we note that

Hence for P € &2 we have

<Z[A]jk§k, P> = [Alije ® 9™ ((P)) = 0 ® 9™ (0;(P))

k=1 k=1

=0 @7 (9;(P*)) = (&, P*) = o(P&;) = ¢(0i(§;) P) = (0-i(&), P) ,

which establishes (3.8). O

3.3 M, = M, for small |q|

Define

N
V=x (Z {#} | 5kxj> :
5.k=1 k

j
Note that (3.6) implies V€ 2. We further claim that 2;V = ¢; and V € P The

former is equivalent to
DiANV) =1+ MGV = (1+ )& =&+ ) 6(&)# X
k=1

To show this, we first note that ; = moco(1®0o_;)0 5]- and so by the derivation property

of 5]- we have

7;(PQ) = (1@ 0-;) 0 0;(P)°#0-i(Q) + (1 @ 0_;) 0 0;(Q)°#P.
Thus using (3.7) and o_;(X;) = [AX], from (2.4) we have

D(NV) =D [ﬂ] N (1 ®0i) 0 0p(&r)H#o-i(X;) + ayés)

, 2
j,k=1

B i 1+ A
N 2

j7k7l:1

J

N 9 1+ A
kak(ﬁt)#[A]lel+];l[1+AL{ 2 szck

N
=&+ Y a(&)#X,
=1
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as claimed.

Now, in order to show V € 257 we will show that V is invariant under o_; and that
(V) = V Together, these imply that V' is invariant under p and hence V' € o) (that V
has finite || - ||g,-norm follows from the fact that for p invariant elements this norm agrees

with the || - ||g-norm). Using (3.8) and o_;(X;) = [AX]; we see that

oi(V)=3% (Z [#] | Z[A]kz& Z[A]ijm>

4, k=1 Jk =1 m=1
a 1+ 4
=3 ( >, A, {T] | [A]M&Xm> =V
4.kl m=1 Jk
Towards seeing . (V') =V, we note that
1 n—1 1 N
Z(Xi, =N, SN mo (@) o di(Xs, - - X )] X
( - Z =~ Z (Xiy - X))

N
—5(Smoneo oal<xh.--xz-n>ﬂXl)’
=1

and by linearity this extends to general polynomials P. Hence

XN: [ﬂ] . [mo(1®0_;)0dn(P)°] X,

2
I,m=1
N
=Y [m )0 8(P)°] X, = N .S (P) = S (NP).
I=1
Consequently (3.7) implies
N
S(NV) =D {#} [(1®0_) 00, (HV)] X,
I,m=1 Im
- A A ]
= > [1+2 } [1+2 } [(1® 1) © O (&) H#0i(X;) + ami€e] X
7.k, Im=1 Im jk
N A 4 )
= > H } H } A e X X1 3 {”2 } o
7.kl m,a=1 Im Jk kl=1 lk
N
=2 [—HQA] A =1 (X)) + AV = AV
I,m=1 Im
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Thus (V) =V, and V € 2% as claimed.

Note
N N
1 1+ A 1+ A
=52, {T} XX =¥ (Z {T} Xka> 7
j.k=1 jk G k=1 gk
and define W :=V — V. Then W € 2% and
N
1+A
Wl =1l < 3 |57 |16 - Xillart
Ji k=1 Jk

We claim that ||{ — Xk||[r — 0 as |¢| — 0, and consequently ||W| g, — 0. Indeed, we can

write
Xe= (11 #X—mo(1@pal)o (1000 +97 ©1) (1o1]),
and so using (3.4) and Lemma 3.2.1 we have

16 = Xillr <||(: @ D(E;) — 1@ 1HR®7TRR

2(1 — - =
+ %MDHZqHR®ﬂR [ ®1)(E;) —1® 1||R®WR'

From the final remark in Proposition 3.1.1, we see that this tends to zero as |¢| — 0. Thus
we are in a position to apply our transport results from Section 2.2. Using Corollary 2.2.19

we obtain the following result.

Theorem 3.3.1. There ezists € > 0 such that |q| < € implies I'y(Hgr,U) = To(Hr, Uy) and
Ly(Hr, Up)" = To(Hr, Ur).

Using the classification of I'y(Hg, U;)” in Theorem 6.1 of [Sh197] we obtain the following

classification result.

Corollary 3.3.2. For Hg finite dimensional, let G be the multiplicative subgroup of RY
generated by the spectrum of A. Then there exists € > 0 such that for |q| < €
I, if G =R}
Ly(Hr,Up)" is a factor of type < I, if G =X, 0< A <1
I, if G ={1}.
Moreover, I'y(Hgr, Uy)" is full.
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CHAPTER 4

Finite depth subfactor planar algebras

4.1 Planar Algebras

We briefly recall the definitions of a planar algebra and planar tangle. For additional details,
see [Jon99], [GJS10], and [GJS12|, [HP14].

Definition 4.1.1. A planar algebra is a collection of graded vector spaces P = {P, ¢ }n>0,cc{+}
possessing a conjugate linear involution *. For each & > 0 we call Py := Py @ Py the
k-box space of P. A planar algebra also admits an action by planar tangles. A planar
tangle consists of an output disc Dy C R? and several input discs D;,..., D, C Dy, each
disc D;, 0 < j < r, having 2k; boundary points (k; > 0). These boundary points divide
the boundaries of the discs into separate intervals and the distinguished interval is marked
with a “x.” Each boundary point is paired with another boundary point (potentially from
a distinct disc) and connected via non-crossing strings in Dy \ (D; U ---U D,). The strings

divide Dy \ (D;U---U D,) into several regions which are then shaded black or white so that

adjacent regions have different shades.

Let T be a planar tangle whose output disc Dy has 2ky boundary points and whose
input discs Dy,..., D, have 2k, ..., 2k, boundary points. For each 7 = 0,...,r we define
¢;j € {+, —} to be + if the distinguished interval of D; borders a white region and — otherwise.
Then T' corresponds to a multilinear map Zr: Py, ¢, X -+ X Pi, . — Phryeo- These maps

satisfy the following conditions.

1. Isotopy invariance: if F is an orientation preserving diffeomorphism of R? then

ZT = ZF(T)
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2. Naturality: gluing planar tangles into one another corresponds to composing the

multilinear maps.

3. Involutive: if G is an orientation reversing diffeomorphism of R? then
Zr(x1, .., x0)" = Zay (a7, ..., xr).

Furthermore, there is a canonical scalar § associated with P with the property that a tangle

with a closed loop is equivalent to § times the tangle with the closed loop removed. .

In light of the isotopy invariance of the planar tangles, we will usually depict the input
discs as rectangles with all strings emanating from the top side and the distinguished interval

being formed by the other sides. For example:

*

a@

corresponds to a multilinear map P, _ x P; _ — Py _. We shall usually omit drawing the

output disc and the shading.

Given a planar algebra P we define Gr,f? = @nzk P+ and GrP = Gr,}fP ® Gr, P for
each k£ > 0. An element of x € GrP can be visually represented as
(o m
where the thick lines on the left and right each represent k strings, the thick line on top is
an even number of strings (possibly zero), and the shading of the region bordered by the
distinguished interval varies according to the components of x. Gr,P is endowed with the

multiplication

v Ay =
(with products of components with incompatible shadings taken to be zero), and the invo-

lution .

80



Now let TLL C P be the canonical copy of the Temperley-Lieb planar algebra, and T'L,, the
sum of all the Temperley-Lieb diagrams with 2n boundary points (including both shadings).
Then we consider the Py @& Py _ valued map 1T'ry, on GriP defined for x € Ppip+ ® Pt —
by

Let Gro[[P]] denote the family of formal power series on elements in GryP. As a vector

space, this is equivalent to H Pre Then if TLo = 3 o TLy, € Gro[[P]], we can
ee{+},n>0
define T'r(x) for a general x € Gr,P simply by

Tri(x) =

since the only components of T'L., which will contribute non-zero terms are those matching
the components of x, of which there are a finite number. In fact, given any f € Gr[[P]] we

can define a Py @ Py — valued map with

(4.1)

4.1.1 Subfactor planar algebras
Definition 4.1.2. A subfactor planar algebra P is a planar algebra satisfying:
1. dim(P, 1) < oo for all (n,+);

2. dim(P(),i) = 1;

3. for each (n,+) the sesquiliner form where the thick string denotes 2n strings
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(shaded according to +) is positive definite; and

A
B)-0

4. the equality

holds for any x € Py 4.

Remark 4.1.3. As in condition (3) above, all inner products in this paper will be complex

linear in the second coordinate.

The condition dim(Fp ) = 1 implies that each P, 1 is isomorphic to C as C*-algebras

with the multiplication

b-@@.

Because of property (2), the maps Tr; defined above are in fact C%*-valued and we
think of them as scalar valued when restricted to either Grf P or Gr, P. Write Try(z) =
(Try 4 (x), Trg —(z)) for the two components, and let TLY (resp. T'L_) be the formal sum
of all Temperley-Lieb diagrams whose distinguished interval borders an unshaded (resp.
shaded) region. Then T'rj . are equivalently defined using the same tangle as T'r; but re-

placing T'L., with TLY or TL__.

We extend the inner product from property (3) to all of GroP with the convention that
Ph.e is orthogonal to Py, ,, when (n,e) # (m,u) € N x {+,—}. Then Tro+(z) = (TLE, z).
More generally, if ¢ : GriP — C are linear functionals and ¢y = ¢, @® ¢_ then there exists
an element f € Gro[[P]] so that ¢o(z) = (f*,z). Hence we can define ¢: GryP — C? for

each k via (4.1). We also note that if ¢, is positive then f = f*.

4.1.2 Planar algebra of a bipartite graph

For a more thorough treatment of the following section, please see Sections 2 and 4 of [GJS10]

(specifically subsections 2.4, 2.5, 4.1, 4.2, and 4.3).

Let I' = (V, E)) be an oriented bipartite graph with positive vertices V; C V and negative

vertices V. = V' \ V. Given an edge e € F, we let s(e),t(e) € E denote its beginning and
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ending vertex, respectively, and let e° denote the edge with the opposite orientation (i.e.
s(e®) = t(e) and t(e®) = s(e)). Then E, = {e € E: s(e) € V. } is the set of edges starting
on a positive vertex, and E_ = {e € E: s(e) e V_.} ={e’: e € E, }.

Let L denote the set of loops in I' where a loop traveling along edges ej, s, ..., ¢, (in
that order) is written as ejes---e,. Since I' is bipartite, any loop will consist of an even
number of edges and so we let L,, for n > 0 denote the loops of length 2n (with Lo = V). We
further sort the loops according to whether they start with a positive or negative vertex and
denote these by L, + and L, _, respectively. Then for each n > 0, we consider the vector

space P}, (resp. P} _) of bounded functions on Ly 4 (resp. Ly, ).

When |E| < oo (and consequently |Lp, +| < oo for each n), the vector spaces P} , are
finite dimensional and spanned by the delta functions supported on individual loops in L, 4.
Letting u € L, + serve as notation for both the loop and the delta function supported on
said loop, we write

w = Z Buw(u)u

UELp +
for elements w € Py ,, where f,(u) € C.

We define the following involution on P! _:
* L B (1,0
w* = E B (uw)u?,
UELnp +
where u? =e; ---e] when u =e;---e,.

Let Ar be the adjacency matrix for the graph I'. By the Perron-Frobenius theorem, Ar
has a unique largest eigenvalue § > 0 with eigenvector p satisfying p(v) > 0 for all v € V.
p(v)

We note that the eigenvalue condition Arp = dp guarantees iw) < 0 for all adjacent vertices

v,we V.

The map Zp associated to a planar tangle is defined as follows. Replace T with an
isotopically equivalent tangle whose input and output discs are rectangles with boundary

points along the top edges and distinguished interval forming the side and bottom edges.
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Assume that Dy and Dy, ..., D, are the input and output discs, respectively, that D; has
2k; boundary points, and that the distinguished interval of D; has the shading ¢; € {4, —},
0 <j<r. Letu; €Ly, for each j, and assign each edge in u; to a boundary point
on D;. The edges are assigned in order with the leftmost boundary point corresponding
to the first edge and the rightmost boundary point corresponding to the last edge. We
set Zp(u,...,u,) = 0 unless every boundary point, say corresponding to an edge e, is
connected to a boundary point of Dy or is connected to a boundary point of another input
disc corresponding to the edge e¢°. When the latter holds, each string is labeled by a single
edge (and its opposite) and consequently the regions in Dy \ (D U --- U D, U {strings})
can be labeled by vertices: traversing the regions adjacent to D, clockwise corresponds to
traveling along the vertices in the loop w;. In this case, Zr(us, ..., u,) is supported on the
loop fi:-- fok,, where f; = e if the Ith boundary point of Dy is connected to the boundary
point of an input disc corresponding to the edge e. The value of this function is

b~

el pa) = [T (AT

~ve{strings in T'} “(8(67))

where p is the number of closed loops in T, e, is the edge corresponding to the boundary
point at the start of the string v, and 6, is the total winding angle of the string v (counter-
clockwise being the direction of positive angles). We then multilinearly extend to Zr to

Pk1,61 X X P/fmer'

When the output disc has zero boundary points there is one region of Dy \ (D; U ---U
D, U {strings}) bordered by the boundary of of Dy. If the above procedure labels this region

vg € V, then Zp(uq,...,u,) is supported on vy with the same value as above.

We have the following fact originally due to Jones (cf. [Jon00], [JP11], and [MW10]):

Proposition 4.1.4. Let P be a subfactor planar algebra. Then there exists a bipartite graph
I and a planar algebra embedding i: P — P".

A subfactor planar algebra is of finite depth if its associated Bratteli diagram has finite

width. From this Bratteli diagram one constructs the principal graph for the subfactor
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planar algebra, which plays the role of I' in the above proposition (¢f. [Jon00] and [JP11]).
In particular, if P is of finite depth then I' can be taken to be a finite graph.

For the remainder of the paper we fix a finite depth subfactor planar algebra P, along
with finite bipartite graph I' and inclusion i: P — PY. We will use the notations (b, a)p or

(b,a)pr to distinguish between the pairings
(4]

occurring in P or P

Define the maps {7y }x>o for both P and P as above. As a planar algebra embedding,
i preserves the actions of tangles. Hence Ty oi(x) = Tri(x) for all z € GryP and all k > 0.

However, the 0-box space of P! is £>(V'), so T'ry, o i(z) is a function on V satisfying

Trp(x) iftveV,
[Try 0i(2)](v) = ki () | AR (4.2)
Try_(z) ifveV_

With this in mind we extend ¢ to an embedding i: Gr,P — Gr,P'. As the x-algebra

structure of Gr,P was defined using planar tangles, 7 is a *-algebra embedding.

4.1.3 The Guionnet-Jones-Shlyakhtenko construction

We let H denote the complex Hilbert space with the edges E of I as an orthogonal basis

and norms defined by

VI

o - [

and use the notation

o) = | 1B = e

We define left and right actions of ¢>°(V') on H by

v-e- 'U, — 51}:5(6)5v/=t(€)67
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where v denotes both the vertex and the delta function supported at that vertex. Thus H
is an £>°(V)-bimodule. We define an ¢*°(V')-valued inner product by

<€a f>é°°(v) = <€a f> t(e) = <67 f> t(f)
Let

Freqvy = (2(V) & @ HE=0m,

n>1
and observe that because the tensor product is relative to £>°(V'), non-zero elements e; ®

- ® e, € Fo(yy correspond to paths e --- e, in I'. Indeed:
e®f=(e-tle)®f=ex(tle) f)=0ye=s(ne® f-
For each e € E we define {(e) € B(Fy(v)) by

l(e)v = dye)=ve

le)er® - Qe,=e®@e; @+ X ey,
and then its adjoint is given by

le)'v =0

g(e)*€1®"'®en: <€,€1>goo(v)€2®"'®€n.

Notice that in the above formula (e, €1).y;y = (€,€1)t(e1) and that t(e1)ez = e if this

element is a path. The norm of this operator is given by
)]l = llece) e(e)]|> = fell
For each e € E we define the non-commutative random variable
(e) = U(€) + Ue)" € B(Fomq)):
and consider the conditional expectation £: B(Fye(yy) — £°(V) given by

S(.CE) = <1€°°(V)7 $1€°°(V)>Eoo(v) )
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where Loy = >, oy v is the multiplicative identity in £>°(V').

It is known that (Grd P, Try) embeds via
e eop > c(er) - - c(eay)

into the von Neumann algebra (WW*(c(e): e € E,),€) in a trace-preserving manner (cf.
Theorem 3 in [GJS10]). In fact, all of GroP" embeds into W*(c(e): e € E) in a trace-

preserving manner. Denote M := W*(c(e): e € E).
For each v € V', we can define a state ¢, = 9, o £ and a weight

¢:Z¢v-

veV

Then for z € GryP, using (4.2) we see that

pocoi(x)=|VilTroy(z) + |Vo|Tro—(x) = (|Vi|TLL + |V_|TLL, z).

oo

Consequently we define T'Lo, := V. |TLE + |V_|TLy, € Gro[[P]] and Tro(z) = (T Lo, z) so
that

Tro(z) = ¢pocoi(x). (4.3)
Consider the Fock space

F=Ccoo@ner
n>1
(ignoring the ¢>°(V)-bimodule structure of H). Let ¢ be the vacuum state on B(F). For
cach e € E we define {(e) € B(F) as above and let é(e) = /() + {(e°)*. Extending ¢ to
loops by ey -+ -eq, > ¢(e1) -+ ¢(ey), it follows that ¢ o ¢ = ¢ o é. Indeed, the GNS vector
space associated to ¢, is isomorphic to the subspace of F spanned by elements of the form

€1 ® - ® ey, where ey -+ ey, € L and s(e;) = t(ea,) = v. Consequently,

Pu(cler -~ ean)) = p(Cer - ean).
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Since this holds for each v, ¢(c(z)) = ¢(é(z)) by summing over the support of = according

to which vertex it starts at. Consequently, using (4.3) we have
Tro(z) = p(éoi(z)) xr € GryP. (4.4)

From now on, we will repress the embedding notation ¢ and consider GryP as a subalgebra
of GryP, although the traces of such elements will still be thought of as scalars so that (4.4)

makes sense.

We will use the notation C, = é(e) for e € E, and M = W*(C,: e € E) C B(F). It turns
out M is a free Araki-Woods factor, which we demonstrate below, and thus this embedding

lies in the scope of the transport results obtained in Chapter 2.

4.2 Free Araki-Woods Algebras

Each C. is a generalized circular element (cf. [Sh197]). Indeed, let h = e/||e|| and g = €°/||e°||

be normalized opposite edges. Then
Ce = [lellf(h) + el " (g)" = llell(€(h) + o (e)i(9)"),

so letting A(e) = o(e)? = |le]|™* we see that C./||e|| is a generalized circular element of
precisely the form discussed in [Shl97]. Consequently the C, will be linearly related to
certain semicircular random variables, and the von Neumann algebra they generate will be
a free Araki-Woods factor. We describe these semicircular elements presently. For e € E
define

u(e) = m(e +e¢°) ifee Ey

——L—(e—e¢°) ife€ E_
o(e)+o(e®)

)

~

so that u(e), u(e®) are unit vectors. For each e € E let X, = f(u(e)) 4 £(u(e))*, then it is

easy to check that for e € E

C. = 5 (Xe —iXeo), and (4.5)
C. = ‘7(6); 7<) (X, +iX,0).
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For each pair e, f € E let oy = p(X5Xe) = (u(f),u(e)). Then take A € Mg(C) to be

the matrix defined by [ = a.f. It follows that A is a block-diagonal matrix in the

HLA}ef

sense that [A].y = 0 unless f € {e,e}. As this will be the case for many of the matrices

considered in this paper, we adopt the following notation for B € Mg /(C) and e € E,:

B(e) := € My(C).

3 (M) + A7) =5 (Me) = Ae)™)
5(Ae) = Ae)™) (M) + AT

Moreover, A is positive with spectrum(A) = {\(e)}ccp and consequently,

]l = mix A(e) = max Z‘((iii))g <6 (4.6)

Setting U; = A" for t € R gives a one-parameter orthogonal group with [U;].; = 0 when
f & {e, e’} and

Ue) = cos(tlog A(e)) —sin(tlogA(e)) ccp,.
sin(tlog A(e)) cos(tlog A(e))

It follows that H is isomorphic to the closure of C¥l with respect to the inner product

2 E
<x7y>U = <mf£ay> €,y € (Cl ‘7

and this isomorphism is implemented by sending the standard basis of C/#l to {u(e)}.cr in
the obvious way. Moreover, M = W*(C.: e € E) = W*(X,: e € E) 2 T'(RI®I,U,)", where
the latter von Neumann algebra is a free Araki-Woods factor.

4.2.1 The differential operators

Since M is a free Araki-Woods factor, all the machinery developed in Chapter 2 carries

over and we proceed by translating it to the context of the generalized circular system
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C = (Ce:e € E). Let X = (X.: e € E), then the linear relation in (4.5) can be stated

succinctly as
C=UX, (4.7)

where U is the matrix with [U].y = 0 for f & {e,e°} and

Because of this linear relation, if we denote & = C (X,.: e € E) then these can be thought
of as non-commutative polynomials in either the X, or in the C,. As elements of &, the
|E]|

distinction is trivial; however, for the purposes of composition with elements of 22! it is

necessary to indicate whether an element is being thought of as a function on the C, or the

Xe.

Let {0c}cer be the free difference quotients defined on & by 6.(Xf) = 01 ® 1 and the
Leibniz rule. We use the same conventions on & ® H°P as those in subsection 2.1.2. The

o-difference quotients are given by

au(e) = Z af65f7

feE

and these generate a new collection of derivations {0, }.ecp via the linear relation in (4.7):
ae - [U]eeau(e) + [U]eeoau(eo)-

These can also be independently defined on & by 0.(Cf) = ds—cc0(e)1 ® 1 and the Leibniz

rule. We shall refer to the derivations {0, }.cr as c-difference quotients.

For Q € 2l we define _2.Q € Mip(Z @ P) by [ 2.Qley = 0;Q.. In particular,

o= 0 e e, 4s)
ole)l®1 0

Letting _#, be as subsection 2.1.4 we have [_Z,Q|cy = Oup@e and

JQ = _J.Q#U". (4.9)
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Using this and (4.7) we see that

SO = U JoXHUT = Up =", (4.10)

and after noting that #.C~!' = #.C we also have

1+ A

— = I X1 =U"H# _#.0#U. (4.11)

Let {Zu(e) }ecr be the o-cyclic derivatives of subsection 2.1.4:
@u(e)(Xm T Xen) = Z aeeka—i(XekH " 'Xen>Xel o Xey 1
k=1

and for Q) € & we let 2Q be the o-cyclic gradient of Q: 2Q = (Zy()Q: e € E). We then
define the c-cyclic derivatives D, = [Ulece Du(e) + [Uleeo Du(esy for each e € E. That is,

€k—1

9€<061 e Cen) = 0,<€O) Z 6€k2300fi<05k+1 T Cen)Cel - C
k=1

n

= J(eo) Z 5€k:€° ( H g(el)Q) Oek+1 U CenCel U Cek—17
k=1

I=k+1
where we have used the action of the modular automorphism group ¢; on C. discussed in

Lemma 5.(ii) of [GJS10]. For Q € & we define Z.Q = (2.Q: e € E) as the c-cyclic gradient.
It then follows that

2.Q =U#2Q. (4.12)

It is clear that the c-difference quotients and c-cyclic derivatives induce derivations on GryP"
through ¢, and we denote these by 0, and Z. as well. Suppose eu is a loop (so that u is
a path from t(e) to s(e)). Then O.u is zero unless e° is one of the edges traversed by u in
which case O.u is a tensor product u, ® u, of two loops such that wu, starts at t(e) and wu,
starts at s(e). If u itself is a loop, then Z.u is zero unless €° is traversed by u in which case

P.u is path starting at s(e) and ending at t(e).

We next encode the action of these differential operators on GryP via planar tangles.
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Lemma 4.2.1. For g € GrgP, © € P, 1, and 1 <1 < 2n, consider the tangle

where the ith boundary point of x is connected with g and we sum over all choices of boundary
points of g. Then the image of the output of this tangle under ¢ is the same as ¢(x) except

with each monomial Ce, - - - C.,, changed to Ce, -+ (D.,¢(g)) -+ - Ce,, .

Proof. We prove this result for the corresponding tangle on GryP", so that it then holds via

our embedding GryP — GryP’. Suppose w = e; -+ €9, and u = f1 - - - fom, are loops. Then

= bp—eo(ef)er ey [o(fia1) fiar - 0(fam) famfr -+ fio1] €101+ €an.

The image of this under ¢ is precisely Ce, - - - Ce, | [Ze,¢(u)] Ce,,, - - Ce,,. Using the multi-
linearity of this and the tangle with respect to v and w, we obtain the result for general ¢

and z. O

This lemma tells us that

can be thought of an |F|-tuple whose components are indexed by how we label the bottom
string, and whose image under ¢ is the c-cyclic gradient of ¢(g), Z.¢(g). That is, the | E|-tuple

is Z.9.
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Identify GroPT with a subspace of its dual via the pairings

2L prl (@) GroPT = €, f € Gro[[PT] (4.13)

veV
Given a linear functional v on M, v o ¢ is a linear functional on GryP" and so by duality
there is an element f € Gro[[P']] so that

Yodlw) =Y [fa)pr] (v).
veV

Lemma 4.2.2. Given a linear functional ¢: M — C, suppose the element f € Gry[[P']]
associated to 1 as above belongs to the subspace Gro[[P]]. Then for x € GroP embedding as
>wer Be(uw)u € GroP" we have

= b @ P (Z ﬁﬁw(eu)&é(u)) ) (4.14)

eucl

where on the left we sum over the choices of the right-most endpoint of the string connecting

x to itself, and V(e) € N is |V, | if e € E and |V_| otherwise.

Proof. We first claim that

embeds as (¢ ® 1)(>_,,cr Ba(eu)0ec(u)) under ¢. Indeed, let eju = ejey--- ez, € L. Then

this tangle evaluated at e;u instead of z yields

2n

S bemega (el e2 e dprl(tlen)esin - ean

Jj=2

(We note that if e; = e then ey - --e;, and e;q - - - 2, are indeed loops).

Now, since (f*, ez - - - €j_1)pr is supported only on t(e1) = s(ez), we have [(f*, ez ---¢ej_1)pr](t(e1)) =

(c(ez---e;,)). Consequently the image of the above expression under ¢ is

Z Oc;=eq0(e1)(C(eg -+ €j1))e(ej1 - - ean) = (Y @ 1)(Fe ez - - ean)) = (¥ © 1)(0eyu).
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Summing over general eu € L yields the claim for z.

Now, for a € GrgP we have that (f*,a)pr is the function supported on V. with constant

value of (f*,a),. Hence 9(¢(a)) = |V4| (f*,a)p, or

[GBET»
* - |V+’ (C(a’))7

where the planar tangle is occurring in P. Similarly for a € GryP. Applying this to the
output of the tangle in the first claim yields (4.14) once we note that the components of z

in GryP embed as Y Be(eu)eu € GrPT, respectively. O

eucly

Remark 4.2.3. The element associated to the free quasi-free state ¢ by (4.13) is T L,
which we note is distinct from 7L, the element associated to it via the pairing (f*, - ), on
GroP. This difference is simply a consequence of the relationship between these two pairings

for elements of GryP:

Z[(f*ax>7jl“](v) = V4| <fj_,x+>7> +|V_| <ff,x_>7> for f € Grol[P]], = € GroP.

veV

4.2.2 Formal power series and Banach algebras

Recall the norms || - ||z, R > 0, on & from subsection 2.1.3 which for

Q:Z Z Boler, ... en)Xe, -+ Xe,,s Boler,...,en) €C

n>0ey,....en€FE

were defined

||Q||R5=Z Z 1Bo(er, ... eq)|R"

n>0eq,....en€E

We denote the closure ﬁ”'”R by 2.

We note

Xl = [12Cu(e)) + (u(e))]| < = (lell + flell) < 2(1 + 6%).

— Vole) +a(e)
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Thus, in light of Lemma 2.1.5, we will usually consider R > 2(1 + §1) so that 25 c M.
In fact, due to hypotheses of the non-tracial free transport theorems (e.g. Theorem 2.2.18)

we will usually restrict ourselves to

R > 457 > 4/ A],

where we have used (4.6).

We let ,@pr) denote the intersection of 22 with M., the centralizer of M with respect

to ¢ (i.e. the elements fixed under the modular automorphism group {0y }ier)-

Also recall the norm || - ||z, and the map p from subsection 2.1.3. The tangle induced by
p on GryP' is the identity tangle but with the last string rotated clockwise around to the
leftmost boundary point of the output disc. Equivalently, the tangle shifts the distinguished

interval to the adjacent interval in the counter-clockwise direction.

Let 2finite = {Q € P ||Q||lro < 0o}, then it is easy to see that 2 N M, C P and
we let @(F0) = Zpfmie! 17 Observe that 209 ¢ 2 © M since the | - ||g-norm is
dominated by the || - || g.o-nrom. We also denote 27 = 2(E2) M, and further denote by
259 the elements in 29 which are fixed under p. Such elements are called o-cyclically

symmetric and have the same norm with respect to || - ||z and || - || g,0-

Via the embedding ¢, the norms || - ||, || - ||z, and || - ||r,» induce norms on GroP", which
we denote in the same way, and maps ¢, z € C, and p induce a maps on GryP', again still

denoted in the same way. Let

GroPH) B .— GT—PFH-IIR and
(GTOPF)(R,O’) — WH-IIR,G
(we will see below that ||w]| g, < oo for all w € GroP'). We similarly define (GroP)® and
(GroP)dte),

(GroP")) may be thought of the subalgebra of Gry[[P"]] of absolutely convergent power
series on loops with radii of convergence at least R, where a loop of length 2n is given degree

2n (modulo the constants involved in translating from X to C). Similarly, (GroP")"?) may
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be thought of as the subalgebra of Gro[[P']] of absolutely convergent power series on the
loops so that every rotation of their support loops has a radius of convergence of at least R.

We also use the subscripts ¢ and c.s. to denote the corresponding subspaces.

We make the following observations for a loop e; - - ez, € Ly +:

SR (- VL)) D
O'fi( 1 2n> <E ,U(S(el))> 1 2n 1 2n

and for 1 < k < 2n

by — [ TT M),
P(l Qn) ( H ))> 2n—k+1 2n €1 2n—k

l=2n—k+1 ,LL(S(@[

_ plt(en)) ke ey e (4.15)

(s(ean—rt1

Note that for e € F

o(e) +o(e)

||Ce||R:| (X, +iXe)|| < V1+6Y2R,

R

where we used the bound 5 ((;}')) < 4 for adjacent vertices v,v" € V. Thusforw =3, ., Bu(uu €

P, we have the bound

lwllr < D [Bu(w)](1+ 872" R,

UELp +

and using (4.15) we obtain

lwllre <A S [Bu(w)](1 + 62" R,

UELp +

where A = max, /ey % < o0o. In particular, for any w € GroP", ||w| g, < 0.

4.2.3 The Schwinger-Dyson planar tangle

Let v: M — C be a state on the free Araki-Woods factor M and let V € ;@C(,Ij,’a), with

R > 452. Then ¥ is said to satisfy the Schwinger-Dyson equation with potential V' if

V(DVHQ) = @YP @ Te( £,Q) Qe PV,
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Remark 4.2.4. This equation implies that the conjugate variables to the {Oy()}ecr are
{Pu(e)V }ecp. Hence Remark 2.1.6 implies that operators whose joint law satisfies the

Schwinger-Dyson equation with potential V' are analytically free.

Using (4.9) and (4.12) the Schwinger-Dyson equation is equivalent to

VPVHQ) =y @¢PT @ Te( Q) Qe PN (4.16)

The solution ¢ is a free Gibbs state with potential V' and is often denoted ¢y .

Lemma 4.2.5. Let ¢ be a free Gibbs state with potential V. Assume that V = é(v) for some
v € (GroP)%7) | and that the element f € Gro|[P")] associated to ¢ by the duality in (4.13)

satisfies f € Gro[[P]]. Then the following equivalence of planar tangles holds:

: (4.17)

where on the left we sum over the boundary points of v which are connected to x, and on the

right we sum over the positions of the right endpoint of the string.

Proof. Let

and suppose x embeds as >, _; B.(u)u € GroP'. Then by Remark 4.2.3 and Lemma 4.2.1

Z|V|fy+pr Z‘v|fy731"](>

veVy veV_

‘¢°é(|va++rv| ) Zmu 2(v) - o(u))
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where V(e) = |Vy| if e € E; and V(e) = |V_| otherwise. Next applying (4.16) yields

v

eucl

* /635 eu o ~
=3 (@M & ¥ (3,(u)),
which is equivalent to the right-hand side of (4.17) by Lemma 4.2.2. O

Definition 4.2.6. For v € (GroP){%e?), we say f € Gro[[P]] satisfies the Schwinger-Dyson
planar tangle with potential v if (4.17) holds for all x € GroP.

Recall the potential considered in subsection 2.1.10
1 1+ A
e,fEE ef

which satisfied 2V, = X. The (unique) free Gibbs state with potential V; is the vacuum
state ¢. Furthermore, by Theorem 2.1.14 there is a unique free Gibbs state with potential

V when ||V — Vi||r, is sufficiently small.
Rewriting V4 in terms of the C, via (4.7) and using (4.10) yields

1

Vo = 5 ZU(@)CEC'@O,

eck

and 2.Vo = U# PV, = C. Observe that Vy = ¢(vg) where vy € GroP is the sum of the 1-box

Temperley-Lieb diagrams

which embeds as § >, 0(e®)ee® € GroP. Since ¢ satisfies with Schwinger-Dyson equation
with potential Vg, and T'L, is the element associated to it by the duality in (4.13), we know

T L., satisfies the Schwinger-Dyson planar tangle with potential vy by the previous lemma.

However, this is true by visual inspection within the context of the planar algebra: note

- (@D
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Hence the Schwinger-Dyson planar tangle holds simply by following the leftmost string at-

tached to x through the diagrams in 7L .

In Section 4.3.1, we construct elements TLY € Gro[[P]] which satisfy the Schwinger-
Dyson planar tangle for potentials v close to vy with respect to the || - ||g,-norm. Our
convention will be to denote the difference by w = v — vy. We will also construct an
embedding of GryP' into M taking the edges e € E to non-commutative random variables

whose joint law with respect to ¢ is the free Gibbs state with potential V' = é(v).

4.3 Free Transport

For the remainder of the paper we fix R > R > 40 2. The constants obtained in the following
will depend only on R, R', |E|, and ||A]|.

4.3.1 Constructing the transport element

Corollary 2.2.19 asserts that if Z is an N-tuple of random variables in some non-commutative
probability (L, 1) whose joint law 17 is the free Gibbs state with potential V', and ||V —V;||r»
is sufficiently small, then (W*(Z), ) = (W*(X), ¢) and the isomorphism is state-preserving.
Stated more succinctly, the theorem gives W*(py) = W*(py,) for ||V — Vo||ro sufficiently
small. In this section we will show that if v € (GroP)>”) with |jv — Vol R, is sufficiently
small, then there is an element satisfying the Schwinger-Dyson planar tangle with potential

.

Recall that the map A" & — & is defined by multiplying a monomial of degree n by
n, and ¥ is its inverse on monomials of degree one or higher. Also, .*: & — & averages

a monomial over its o-cyclic rearrangements. These induce maps on GroP', which we also
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denote A4, ¥, and .%:

N (e e2) = 2neq - - - €2n,

1
Y(ep---e9n) = %61 - €9y, and

2n

1
S (er- - ean) = m Zpk(el “e€2n),
k=1
or for x € P, C P},
N (x) = 2nzx,
1
Y(z) = 7% and

()= 5= > ).
k=1

Lemma 4.3.1. Let w € (Grop)giﬂ’a) and denote W := ¢(w). Consider the following map
defined on {G € P 1Gllr o < 1}:

1
F(G) == W(C + 2.5G) - 5 > o(e) (2.3G) (2e-2G)

ecE

+> EV™ g g)e ([U QA_;UT]

1
m—1
m 1+ L DECH#H ( JCH JD5G) )

S enen <[U12+_AAUT] 935G (/CC#%%EGW) -

m>1

Consider the following planar tangles on GroPr:

Tl(g): *( ]
w )

where the number discs containing vg + Xg varies according to the components of w and for

each such disc we sum over the boundary points connecting to w;
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where in each disc we sum over the boundary point connecting to the other disc;

T3,m (g) =

~
h
8

where there are exactly m discs containing g and for each disc we sum over the two boundary

points connecting to one of the other m — 1 discs; and finally

T4,m (g) =
%

where again there are exactly m discs containing g and for each disc we sum over the two

boundary points connecting to one of the other m — 1 discs.

Then on {g € (GTOPF)gT’U)I l9llro <1},

Foc=¢coT,
where
1 (_1)m+1
T=-T -1, + ———— (T +Thm),
15t mz;l - (T3, 4m)
and convergence is with respect to the || - ||r-norm.

Proof. We will prove this equivalence term by term. For w € GroP and W = ¢(w), we have

that ¢o Ty(g) = W(C + 2.5¢(g)) immediately by Lemma 4.2.1. For w € (GroP)ek ™),
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we can sum over the support of w to obtain the equality since convergence is guaranteed by

IW(C + 2:5¢(g))|r < ||W||r41, which follows from Lemma 2.1.7.

Let

We will show éoTh(ur,uz) = -, p 0(€)(Zeé(ur))(Deoé(uz)). First assume each u, I € {1,2},
is a delta function supported on the loop ¢;; - --€;,,. Then
ul? u2 Z 2562 J2 =1 5, O 62732)0(6173'14-1)2 T 0'(617n1)20'(627j2+1)2 U a<€2,n2>2
J1=1j2=1

X €15141° " €1n1 €11 €151 —1€25541 """ €21np€21 """ €251

n1
=D ey —eo0(€)a(€)a(eri1)* O (€1m) €1 541 CLm €L €1

ecFE j1=1

X 2562,j2:50-(6)0-(627j2+1)2 e 0(62,n2)2€2,j2+1 T C2np€21 0 €251
Jjo=1

Applying ¢ yields

co TZ(“M Uus) = Z 0(e)[Ze(Ceyy -+ Celm,l )][960(062,1 T Cez,nQ)]

= 0(e)(Zeb(m))(Zeo i)

ecE

Using the multilinearity of each side we have for arbitrary g € GryP"

¢oTy(29,59) = Y 0(e)(2.58(9))(Z-Eé(9)),

eck
and we note that the left-hand side is ¢ o T5(g).

Let

Tg’m(ul, . ,um) =

102



We claim that

co Tg’m(ul, ce ,um)

—(19¢)oT ([U i UT] Dbl b SO S D) #/CO#/c@caum)) .

Assume each u;, [ € {1,...,m}, is the delta function supported on the loop e, - - - ¢, ,,. Note

that because of (4.8), for each [ =1,...,m —1 and e, f € F we have
[ CH# FeDet(w)]y =0(€°) [ FeDel(wr)]eos = 0(€°)0f Deo (i)

:U(eo) Z 0(6)5€l,jl:€O-(f)5€l,il:fo ( H U(el,k)2>

1<, 5 <my k=741
JiFu

X Cerj1 e eri—1) @ Cleris1 - €rj-1)

= E : 5€=el,jla(el7jz+l)2 T 0<€l,nz)20(62il)5el,iz=f° (4'18)
1<j1,5<my
JiFi

X é(el,szrl e eri—1) @ (e 41 €rj—1)-

Also, it follows from a simple computation (similar to 4.10) that

<[U 247 UT} 1) @=| 0 o) ¢cE,,

1+A

so that

-1 -1
(o) #rio)

ef
=0(e°)?[_Z.D.0(u1)]eo s = 0(e°)* 0 Do b(uy) (4.19)
= Z U(e(i,jl)256=el,j10(61,j1+1)2 e 0-(617n1>20-(6(1),i1)561,1‘1=f°
1<51,41<m
Ji#i

X (€141 €1 1) @ C(eri g1 €1y 1)

103



Now

m—

ni Nm 1
Bt =323 5 [T et oten ot
1

n=1 Jm=li1#j1,....im#Fjm L=
2 2
X U(em,]m+l) e O-(emynm) O—(Gmyim)éem,im:ei) J1
X €1 ji41" " €lig—1"" " Cmjpm+1l """ Cmipy—1

X [TTO(em,im+1 T Cmygm =1 T €l 41 '61,3‘1—1)] (S(em,z‘mﬂ))-

We make the substitution o (e, i, )0, , —eo. = o(€d,, )5em,im:ei’jla(ec1),j1)2 , and then group

emﬂm*el,jl m,tm

the factors o(ef ; )*0ee with the factor corresponding to [ = 1 in the scalar product

m,im, =€1 J1

in the above equation. Also, we group the factor 9, with the factor

o = 0p0 —ey s -
€Li =€ 1,5y €4, =€l+1,5141

corresponding to [ + 1 rather than [. Finally, recall that if u starts at v then [Tro(u)](v) =
¢u(c(u)) = @(é(u)). With these remarks we have

Tg,m(ul, ey Upy)

= (1®[pod) Z (€5 ;) 0 —en,,

1<]17’Ll <7’L1
J1FiL

X H a(ers)?o(eS ) (€1 €1 @ eriyr €1 1)

t=j1+1
m
7; z : 5‘31 Lip_q— Cbil
=2 1<7;,51<ny
JiFu

X H o(ere)” o(€rs,) €gitt €Li-1 @ €rg1 - €y
t=g+1

Applying ¢ and comparing this to (4.18) and (4.19) demonstrates the claimed equivalence.

Then using the multilinearity of each side to replace u; with ¥g for each [ =1, ..., m shows

¢o T37m(g) = (1 ® QO) oIr <|:U ff—AUT:| _ jc@czé(g)# (/CC#/c@czé(g»m_l) :

104



A similar argument demonstrates

2A

¢oTym(g) =(p®1)0Tr ({U—UT]

114 SDX(g)# (/cC#/c@cZé(g))m_l> -

Finally, a term by term comparison then yields the equivalence FF'o¢ = ¢oT on {g €

(GroPH)L gl < 1} O

Using (4.9), (4.11), and (4.12) it is not hard to see that the map F' defined in Lemma
4.3.1 is equivalent to the map considered in Corollary 2.2.15. However, in the latter map W
is being thought of as a polynomial in the X, (for the purposes of composing with X + 2G).

Corollary 2.2.19 (with N = |E|) then says that there is constant € > 0 so that if W = é(w)
for w € (GroP) ™) with ||w||p110 < € then there exists G € 257 so that the joint law
of the N-tuple Y = X + 2G is the free Gibbs state with potential Vo + W. By (4.16) this
is equivalent to joint law of the N-tuple C' 4+ Z.G satisfying the Schwinger-Dyson equation
with potential V5 + W, but with the differential operators &, and _#.. That is,

¢ ((Ce + 2.G) - Q(C + 2.G)) =p ® ¢ ([0.Q)(C + 2.G))
-9 ([2.W](C + 2.G) - Q(C + 2.G)), (4.20)

where here Q(P) for Q € 2" and P € (2™)IFl means Q evaluated as a power series in
the C, at C, = P..

This G = X where G is the ||-|| g y-norm limit of the sequence Gy, = (.ZIIF)*(1W). Thus
if we define g, = (ZTT)*(w), then Gy = ¢(gy) by Lemma 4.3.1 and hence the || - || g7 ,-norm
limit § of the sequence (gj)ren satisfies é(j) = G. Let g = £g. Additionally, we note that
lgllr.» and ||g||r» both tend to zero as ||v — vg||g41,, — 0. This follows from Corollary

2.2.16.(v) (specifically the last paragraph of the proof).

Definition 4.3.2. The element g € (Grop)gi’o) is called the transport element from vy to

v.
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Define n: GroP — Gro[[P]] by

where the number of discs containing vy + g varies according to the components of x and

for each such disc we sum over the boundary points connecting to x. From Lemma 4.2.1 it

follows that ¢ on(z) = [¢(2)](C + 2.G).

Moreover, we claim 7(x) € (GroP)® for each x € GroP. Fix z € GryP. Since g €
(GroP)") | there is a sequence {hy fnen C GroP so that ||g — ha|lr — 0. Let

( x ),

then x,, € GryP and n(x) is the || - || g-limit of the z,, by Lemma 2.1.7.

It is clear that the element associated to ¢ o ¢ o i via the duality in (4.13) is

where we sum over the number of input discs containing v, g, and for each disc we sum over

the boundary point connected to the bottom of the diagram. Define

Tr§ (x) :== (TLY, ),

(we note TLY = 7LY" since vo, g, and T' L, are all self-adjoint), then Tr((]v) =Trgon.

The above observations and Lemma 4.2.5 immediately imply the following proposition.
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Proposition 4.3.3. There exists € > 0 such that when v € (GT‘OP) (F+Lo) gatisfies lv —
vo||rr+1,0 <€, thereis g € (GrOP)Eﬁ ) so that TLY € Grol[P]] defined as above satisfies the

Schwinger-Dyson planar tangle.
Moreover, the map ¢ on sends GroP" to a subalgebra of W*(Ce + Z.¢(g): € € E). The

joint law of the generators {Ce + D.¢(g) }ecr with respect to the free quasi-free state ¢ is the
free Gibbs state with potential [¢(v)](C + Z.¢(g)) = ¢on(v).

Remark 4.3.4. The Schwinger-Dyson planar tangle on GryP was solved in Proposition 2
of [GJS12] for potentials of the form vy + Zle t;B;, B,..., By € GroP with ), |t;| small.
Proposition 4.3.3 extends this to By,..., By € (GroP)#+19) despite its requirement that
By, ..., By are invariant under p.

Indeed, let v = vy + ZletiBZ-, with By,..., By, € (GroP)¥+19) and Zle |t;| small.

(R'+1,0)

Since elements of (GryP) are automatically invariant under 0%, (simply because the

()

is isotopically equivalent to the identity planar tangle), v := #(v) € (GroP)es (1) 4

planar tangle

invariant under p. So we apply Proposition 4.3.3 to & to obtain TLY) € Gro[[P]] satisfying the
Schwinger-Dyson planar tangle with potential ©. But then Lemma 2.1.8 implies Z..7¢(v —
vo) = Z.¢(v — vg). So using Lemma 4.2.1 to translate this to planar tangles we see that
we can simply replace v with v in the Schwinger-Dyson planar tangle, and hence T’ Lgﬂ) also

satisfies the Schwinger-Dyson planar tangle with potential v.

4.3.2 Equality of non-commutative probability spaces

Using ¢ to realize GryP as a subalgebra of M, we let My = W*(&(GroP)) C M and My, =
W*(é(GriP)). Note that by our choice of R > 482, | - ||s dominates the operator norm for
any S > R and therefore (GroP)® C M, for every S > R. Thus, for v € (GroP)% ™)

with ||[v — vo||rs < € (¢ as in Proposition 4.3.3) we have n(z) € (GroP)® C M, for each
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z € GryP. Consider M") = W*(¢ o n(GroP)) C My and Mo(vj[ = W*(éon(GrEP)). In this

section we show that by making e smaller if necessary we have M, = Mé”).

Lemma 4.3.5. Let R > 0. For H € (@(R))‘E|, define
L(H) := (JCHH)HC = o(e)H.Ceo.

eck
Suppose h € (GroP ) with zero Py component embeds into M as

o) =30 3 Bulue)é(u)C,

ecFE ueel

and define H € (QZ(R))W by

He =Y o(e)B(ue’)é(u).

ue®el

Then L(H) = é(h) and for ujeus € L (e € E) we have

Proof. The assertion L(H) = ¢(h) follows immediately from the definition of H and L(H).
To see that the output of the planar tangle embeds as stated, one simply notes that the
string connecting h to e must have e° as its endpoint in h and contributes a factor of o(e°)
to the tangle. O]

Theorem 4.3.6. There exists a constant € > 0 so that for v € (GTOP)QZH’J) with ||[v —

vollr+10 < €, My = Mév). Moreover, there exists a *-automorphism of M which fixes My

and takes the free Gibbs state with potential ¢(vg) to the free Gibbs state with potential ¢(v).

Proof. The inclusion Mév) C M, was already demonstrated at the beginning of this section.
Towards showing the reverse inclusion, fix x € GryP and consider the following recursively

defined sequence: hg = vg and




where g = Ag € (GroP)ﬁ_’i’”) with ¢ the transport element from vy to v. Letting R” =
max{R, ||[Y||r} (Y = X + Z¢(g) as in the discussion following Lemma 4.3.1), we claim that
hi, € (GroP)H") and if

then x4, € (GroP) ), n(z1) € (GroP) B, and n(xy) —  in the || - ||g-norm.

Indeed, suppose G = ¢&(§) = Y oecr 2ueer By(ue)é(u)Ce. From Lemma 2.1.7 it follows
that if f = Z,é(g) = 2.5G, then f, = > eoer 0(€9)Bs(ue?)é(u) and f € (PENEL We
then see by Lemma 4.3.5 that L(f) = G = &(j).

Note that
Y =X+ 2¢g) =X +U"#2.0(9)) = X + U '#/.
We also have for S < R’

PRTIN ERTIN
1flls < 02[lglls < 62[19l[r.o

which tends to zero as ||[v — vg||r4+1,0 — 0. So by taking e sufficiently small we have
IYllr < R+ U #fllr < R,

We will need this shortly when we appeal to Lemma 2.1.10 because it implies R” = max{R, [|Y||r} <
R

For each k, define an |E|-tuple Hy of (a priori formal) power series in the C, so that
L(Hy) = ¢é(hg). In particular, Hy = C since L(C) = ¢(vg). Then these Hj satisfy the
recursive relationship Hy1 = C' — f(H}) since by Lemma 4.3.5,

L(Hpy1) = (hgy1) = Vo — Z Z Byler - ere)[Hyle, -+ + [Hile, Ce

eckE e1---erecL

=Vo— Y _a(e)[f(Hp)leCe = L(C — f(Hy)),

ecE
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and the map L is injective.

The sequence {U'#Hj }ren (now thought of as | E|-tuples of power series in the X.), is
precisely the sequence {H®},cn considered in the proof of Lemma 2.1.10 for S = R’ and
f replaced with U4 f. We saw above that ||[U'#f||zr can be made arbitrarily small by
shrinking €, so let € be small enough that ||[U™'#f||r < C for C as in Lemma 2.1.10. We
obtain U'#H,(Y) € (W(R))“E‘ and U '#H,(Y) — X (with respect to the || - || z-norm and
evaluating U~ '#H}, in the X.) and U #H,, € (2 F))IE Consequently, H,(C + 2.¢(g)) €
(@(R))m', Hy(C + 2.¢(g)) — C (with respect to the || - || g-norm and evaluating Hj, in the
C.), and Hy € (20)/E.

Now,

R < O0;

1Pkl e = [[LCHR) R < IEI\/EIggg I[Hk]eCee

that is, hy € (GroP) ). Next, if z embeds as >°,_; 8.(u)u € GryP', then by Lemma 4.3.5

é<xk) = Z 590(61 to eT‘)[Hk']el U [Hk]erv
er1--e €L
which implies x; € (GTOP)(R”) since 2" is a Banach algebra. Furthermore,
con(zg) = Y Buler- ) [Hu(C+ De(g))]e, - - [Hi(C + Zei(9))le, (4.21)

e1-er€l

which implies n(z;) € (GroP)® as claimed. Additionally, since H(C + Z.¢(g)) — C we

have
conla) = Y Buler--e)Ce, - Cop = é(x)
e1-er€L
in the || - || g-norm, which implies n(zy) — = in the || - || g-norm.

Now, let m,: Gro[[P]] — P, be the projection onto the nth component. For each k and
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N, write xl¥ = ZQLO To(z1). Then limy ||z, — 2 ||gr = 0 for each k. Hence

A (i) = n@)lle = lim | [e(ze —z)]  (C+ Zeilg))ll
—00 N—o0 \—’__/
as a polynomial in the C,
=l | [ - a)] ()l

as a polynomial in the X,

N—o0 N—o00

I-Il=

This shows that n(z;) € ¢on(GroP)  C M and hence x € M as the || - ||z-limit of

the n(z).

Finally, the x-automorphism on M is simply the extension of C, — C. + Z.¢(g). ]

Remark 4.3.7. Because of (4.4), the embedding ¢: (GroP,Trg) — (M, ) is not trace-

preserving. However, restricting to either Gry P and Gry P and normalizing ¢ by \V_lil does

1

‘Vﬂé o7 is a trace-preserving embedding of

yield a trace-preserving embedding. Similarly,
(GroP, Try”) = (ML, ).
Since it is clear that Theorem 4.3.6 also gives the equalities My 1 = Méf’i), we observe

that @é and @éo n are distinct embeddings of GrgP into B(F) which generate the same

von Neumann algebra.
Remark 4.3.8. Since the proof Theorem 4.3.6 relied only on operator norm convergence,

the result also holds when the von Neumann algebras are replaced with the C*-algebras.

4.3.3 Tower of non-commutative probability spaces

In this section we recall the embeddings of GryP" into B(F) considered in [GJS10], and
show that perturbing these embeddings by the transport element g still yields the same von

Neumann algebra.

For k > 1 consider the map ¢,: GryPY' — B(F) defined by

er(ufp - frev---ex) = ller) - Ler)e(w)l(fi)" - L(fr)",
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where ey, ... ex, f1,..., fx € Eand uf;--- fle;---ex € L. Welet ¢y = ¢. The reason for the
apparent rotation of the edges in the definition of ¢, is that when we represent x € GriP as

the diagram

*

we want to send the strings on the left to operators of the form [(e), the strings on the
right to operators of the form [(e°)*, and the strings on top to operators of the form é(e).
Because [(f)*I(€) = d;—c||e||?, ¢ is a *-homomorphism from Gr,P' (with multiplication Ay)

to My, C B(F) where
My, = span{l(ey) - - Clep)e(w)l(fr) - (f1) : e1---epufl--- f2 € L}

Also considered in [GJS10] was the trace gy : M — C defined by

N ) N P
() =0 12 (M(t(fk))) (i fk, - 1i® - fu)r,

which satisfies py,(é(z)) = 3, oy [Tr(2)](v) for © € Gry P, and the embeddings i)'+ My_y —
M, defined by

so that ¢ o iﬁ_l = Qp_1.

These inclusion maps correspond to the inclusion tangles 1 ,’j_l : Grp_1P — Gr,P defined
by

*

I () =

Y

in the sense that ii’l 0CL_1 = C O [,’j’l.

For each k > 0, let M, = W*(é,(GryP)) € My, and My, o = W*(&(GrEP)). In [GJS10],
the embedding ¢: C (e € E) — B(F4) rather than ¢ was used to define these von Neumann
algebras on the GNS space corresponding to the weight ¢ from Section 4.1.3. However,

since ¢ o ¢ = ¢ o ¢ these are isomorphic to the M defined here. Consequently, Theorem
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8 of [GJS10] implies that the standard invariant of the subfactors iy '(M_, ) C My is

isomorphic to the subfactor planar algebra P.

Let v € (GrOP)éif“"’) be sufficiently close to vy so that the transport element g from vy

to v exists. We then define n; on GriP by

* *,

ne(z) = x € Gri,P

; - —

(with ng = n). Note that ni(xAry) = nr(x) Aene(y) for z,y € GryP and that I,f_l intertwines

Nk—1 and 7y,

Theorem 4.3.9. Let € > 0 be as in Theorem 4.3.6. For each x € GriP, ¢ o ni(x) € M.
Moreover, if M,iv) = W*(¢ o np(GrP)) then M,Ev) = M, and M,gvj)[ = My 1. Finally, the
inclusions in the tower {Mév)}kzo given by the maps {i¥ ' }1>0 are the same as in the tower

{ My }x>0; that is, P is recovered as the standard invariant of the tower {M,Si}kzo,

Proof. Let {hy,}n>0 C GroP be a sequence converging to v + g with respect to the || - || g/ o-
norm. Given z € Gr,P, suppose it embeds as ZWEUIGL Bz (uuguy Juusu; where uy, uy are
paths of length k. Define (e; - - - ey,) := {(eq) - - - £(ey,) and ||ey - - - ex|| := |le1]| - - - ||ex . Then

¢k on(z) = Z B (uuSuy )(uy)é o n(uw)l(uy)*.

uugui €L

Now, ¢on(u) = [¢(w)](C + Z.g) is the || - || g-norm limit (and hence operator norm limit) of
[¢(w)|(Zec(hy)). Also

Y Beluugu) () [E(w)](Zeb(hn))f(uz)” = &),

uugul €L

where
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Thus

lew o me(z) = éx(za)l < Y 1Be(uwuguwn) |l [[uzllé o n(u) — [(w)](Zeé(ha))]| — 0,

uugul €L
since € Gr,P has finite support in GriP". Thus M,ﬁ“) C M.

The reverse inclusion follows from the same argument since we showed in the proof of

Theorem 4.3.6 that ¢(u) is the || - ||g-norm limit of elements of the form ¢ o n(u’).

The final statements are immediate from the equalities established above, but we also

note that they follow from the fact that I ,]j_l intertwines n, and n,_; for each k. m

Remark 4.3.10. As with Theorem 4.3.6, Theorem 4.3.9 also holds when the von Neumann

algebras are replaced with the corresponding C*-algebras.

One should think of the embeddings ¢, o ng, & > 0 as small perturbations of the em-
beddings ¢, of GriP. Thus, Theorems 4.3.6 and 4.3.9 say that when the perturbation is
small enough, the von Neumann algebras generated by the GrP are the same and we
can recover the subfactor planar algebra P as the standard invariant of the subfactors
B MY, L) © MY

Suppose 7p: GrgP — C is a trace and let f € Gry|[[P]] be such that mo(z) = (f*, ).
Recall that we can extend this to a series of traces 7: Gri P — C, k > 0, via (4.1).
Let (Hg, T, &) be the GNS representation of (Gr) P, Ar) with respect to 74, and let L =
m(GrP)" € B(Hy). The inclusion tangles If~! induce inclusions i¥~: 71 (Grf_,P) —
Wk(GT]:'P) such that %Z’l OMp_1 = M O I,lj’l. Thus when the L, are factors, one can consider
the standard invariant associated to these inclusions. The following corollary shows that if
f satisfies the Schwinger-Dyson planar tangle with a potential v close enough to vy, then

Ly = M, 4 for each k > 0 and hence the standard invariant for { Ly C Lyi1 }x>o is simply P.

Corollary 4.3.11. Let € > 0 be as in Theorem 4.3.6 and {7, }x>0 and f € Gr{[[P]] as above.
Suppose f satisfies the Schwinger-Dyson planar tangle with potential v € (Grop)cgiﬂ’a). If

|lv — vo|lro < €, then there exists trace-preserving embeddings (GriP,mc) < (M, px) for
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each k, and the von Neumann algebra generated by GriP under this embedding is M.

Moreover, Ly = My, . for each k > 0.

Proof. Let g € (GTOP)E_}S}U) be the transport element from vy to v. Then the embeddings are
simply {ﬁék oN k>0 and the equality of the generated von Neumann algebras follows from
Theorem 4.3.9. The isomorphism Lj = M, ;. follows from the fact that both representations

T, and ¢ o 1 are trace-preserving. O
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