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CHAPTER 1

Uncertainty Quantification

1.1. General Problem

We study problems from uncertainty quantification (UQ) under the model of stochastic partial
differential equations (PDE). The general problem is described as in [30]. For a spatial domain
Ω ⊂ R` (where usually ` = 1, 2, 3), and a time domain [0, T ] with T > 0, we consider a system of
PDE given by

(1.1)


L(x, t,ω)[u(x, t,ω)] = f(x, t,ω), Ω× (0, T ]× Ξ,
B(u) = 0, ∂Ω× [0, T ]× Ξ,
u = u0, Ω× {t = 0}× Ξ,

where L is a differential operator, B is the boundary condition operator, u0 is the initial condition,
and ω ∈ Ξ denotes the random inputs of the system in a probability space (Ξ,F,P). The solution
is denoted

(1.2) u(x, t,ω) : Ω× [0, T ]× Ξ→ Rnu

where nu > 1 is the dimension of u.

Example 1.1. Consider a stochastic (stationary) diffusion equation in one spatial dimen-
sion,

(1.3)

{
−D · (a(x,ω)Du) = f(x,ω), x ∈ (−1, 1)

u(−1,ω) = u`(ω), u(1,ω) = ur(ω)
.

The diffusivity coefficient a(x,ω) and source f(x,ω) are random fields indexed by the spatial
variable, and the boundary data u`, ur are random variables.

1.2. Parameterization

1.2.1. Finite-Dimensional Noise Assumption. In practice, we make a finite dimensional noise as-
sumption [18] that all dependence on a probability space is through a finite set of (usually) inde-
pendent random variables. This converts the purely random problem (1.1) into the parameterized
problem

(1.4)


L(x, t, Z)[u(x, t, Z)] = f(x, t, Z), Ω× (0, T ]× Γ
B(u) = 0, ∂Ω× [0, T ]× Γ,
u = u0 Ω× {t = 0}× Γ

where Z = (Z1, . . . , ZN) ∈ Γ ⊂ RN are (usually) independent random variables parameterizing
the randomness. We can also view Z as simply a deterministic parameter sequence, making (1.4)
simply a parameterized PDE. We now view the solution (1.2) as depending on this parameter
sequence

(1.5) u(x, t, Z) : Ω× [0, T ]× Γ → Rnu .
5
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Note now that we can view our setup entirely deterministically. Any realization of Z simply
corresponds to some deterministic value in Γ . If we can analyze our solution depending on the
parameterization u(Z) over the parameter space Γ , any law of Z allows us to perform an analogous
analysis over Ξ. As an example, if we view u as a random field and Z as a random vector with law
PZ and density πZ, then the mean solution Eu can be calculated as

Eu =

∫
Ξ

u(ω) dP =

∫
Γ

u(Z) dPZ =

∫
Γ

u(z)πZ(z) dz,

where for the latter two integrals, only information of the deterministic quantity u(Z) is necessary.

1.2.2. Karhunen-Loève. Often, we are able to parameterize the random fields in a random PDE by
a Karhunen-Loève expansion, which, at its core, is a spectral expansion of the covariance function.

Theorem 1.1 (Karhunen-Loève). Let a(t,ω), t ∈ T be a random field such that a(t, ·) ∈
L2(Ξ) for all t ∈ T , with continuous covariance function

cova(s, t) = E[(a(s, ·) − Ea(s, ·)) (a(t, ·) − Ea(t, ·))].

Then for λi, and orthonormal ψi satisfying the eigenvalue problem∫
T

cova(s, t)ψi(s) ds = λiψi(t), for all t ∈ T,

and mean-zero, uncorrelated random variables Zi defined by

Zi =
1√
λi

∫
T

(a(t, ·) − Ea(t, ·))ψi(t) dt,

we have the following Karhunen-Loève (KL) expansion of the random field

(1.6) a(t, ·) = Ea(t, ·) +
∞∑
i=1

√
λiψi(t)Zi.

In practice we can truncate the Karhunen-Loève expansion of the random field, parameterizing
the randomness in terms of the uncorrelated Zi. If the Zi are Gaussian, they are therefore inde-
pendent. If they are non-Gaussian, their independence is in practice assumed [30]. Thus, we can
use a truncated KL expansion to satisfy the finite dimensional noise assumption.

The level N at which we truncate the KL expansion is dictated by the eigenvalues of the
covariance function of a. By Mercer’s theorem, and the analogous Parseval’s identity,∫

T

cova(t, t) dt =
∞∑
i=1

λi.

Thus, we can choose N so that some tolerance percentage 1 − ε of the total variance is captured
by the eigenvalues, e.g., ∑N

i=1 λi∫
T cova(t, t) dt

> 1− ε.

In general, a highly correlated process with smoother covariance function will have faster decaying
eigenvalues and therefore N can be taken smaller for a desired tolerance [18].

Example 1.2. We now rewrite Example 1.1 as a parameterized diffusion equation. As-
suming a, f, u`, ur are independent, we represent a and f by truncated KL expansions as in
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(1.6):

a(x, ·) ≈ ã(x, Za) = Ea(x, ·) +
Na∑
i=1

√
λai ψ

a
i Z
a
i ,

f(x, ·) ≈ ã(x, Zf) = Ea(x, ·) +
Nf∑
i=1

√
λfiψ

f
iZ
f
i .

Taking
Z = (Z1, . . . , ZN) = (Za1 , . . . , Z

a
Na
, Zf1, . . . , Z

f
Nf
, u`, ur)

with N = Na +Nf + 2, we have

(1.7)

{
−D · (ã(x, Z)Du) = f̃(x, Z), x ∈ (−1, 1)

u(−1, Z) = ZN−1, u(1, Z) = ZN
.

1.3. Weak Formulations and Well-Posedness

1.3.1. Non-Parametric Problems. We provide an abstract definition for weak solutions to general
PDE with specific examples and refer to [14] for details in specific classes of PDE. Suppose we have
a deterministic (or non-parametric) problem in the form of (1.1) (or (1.4)),

(1.8)


L(x, t)[u(x, t)] = f(x, t), Ω× (0, T ],

B(u) = 0, ∂Ω× [0, T ],

u = u0, Ω× {t = 0},

.

The weak formulation of the PDE (1.8) is a generalization of the equation which no longer
holds pointwise in the domain of u, but rather pointwise in a function space. This allows for us to
abstract the problem, and consider solutions in larger classes of spaces which can then, in certain
circumstances, be shown to solve the pointwise problem as well.

We will now abstract the problem in the form of [23]. First, let X,Y be separable, reflexive
Banach spaces over coefficient field R with duals X∗,Y∗ respectively. We think of X as the space of
solutions and Y as the space of test functions. Now, suppose that L : X → Y∗ is a bounded linear
operator. We associate the bilinear form L : X× Y→ R to L by

(1.9) L(v,w) = Y∗〈Lv,w〉Y
where the latter notation is applying the element of the dual Lv to w. Finally, we also assume
f ∈ Y∗.

Definition 1.1. We say that u ∈ X is the weak solution of (1.8) with the previously
mentioned assumptions if

(1.10) L(u,w) = Y∗〈f,w〉Y for all w ∈ Y.

Example 1.3. We now provide a concrete example which motivates Definition 1.1. Sup-
pose we consider the simple second order elliptic equation in divergence form,

(1.11)

{
−D · (A(x)Du(x)) = f(x), x ∈ Ω
u(x) = 0, x ∈ ∂Ω

.

for some domain Ω ⊂ R`, f ∈ L2(Ω), and symmetric matrix A ∈ R`,` with entries in L∞(Ω)

satisfying the uniform ellipticity assumption

vTA(x)v > α a.e. x ∈ Ω and for all v ∈ S`−1
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for some α > 0.
The weak formulation of (1.11) attempts to make as little assumption on the regularity

of u as possible. In order to reduce the number of derivatives on u we multiply by a test
function w in some sufficient class of functions and integrate by parts:

−

∫
Ω

D · (ADu)w =

∫
Ω

(Dw)TADu−

∫
∂Ω

νTADuw dS

=

∫
Ω

(Dw)TADu,

if we assume that w = 0 on ∂Ω. So at this point, we only need that u is once differentiable.
But for the differentiability under the integral, all that’s truly necessary is weak differentiabil-
ity. Taking into account the boundary conditions, it thus makes sense for u,w ∈ H10(Ω), the
Sobolev space of trace-zero, once weakly differentiable functions in L2(Ω) with weak deriva-
tives also in L2(Ω). This gives us X = Y = H10(Ω).

Now, the bilinear form induced by L = −D · (AD·)) can be taken as

L(u,w) =

∫
Ω

(Dw)TADu.

Multiplying the right hand side and integrating, we identify f ∈ L2 with the element in H−1(Ω)

(the dual of H10(Ω)) given by

H−1〈f,w〉H10 =
∫
Ω

fw+

∫
Ω

0 ·Dw.

Thus, a weak solution of (1.11) is u ∈ H10(Ω) such that for every w ∈ H10(Ω),∫
Ω

(Dw)TADu =

∫
Ω

fw.

Note that in this case, because L is symmetric, it induces an inner product on H10(Ω),
so by the Riesz-representation theorem, the weak formulation has a unique solution for all
f ∈ H−1(Ω) that satisfies the stability estimate

‖u‖H10(Ω) 6
1

α
‖f‖H−1(Ω)

where we take ‖u‖H10(Ω) = ‖Du‖L2(Ω) in the energy sense and α is the constant from the
uniform ellipticity assumption.

For more general L we may not be able to exploit symmetry and must therefore use the Lax-
Milgram theorem (or for X 6= Y, more general existence, uniqueness, and stability theorems).

Theorem 1.2 (Lax-Milgram). Suppose the bilinear form L : X× X→ R is continuous:

(1.12) there exists some γ > 0 such that |L(u,w)| 6 γ‖u‖X‖w‖X for all u,w ∈ X,

and strongly coercive:

(1.13) there exists some α > 0 such that L(u, u) > α‖u‖2X for all u ∈ X.

Then for any f ∈ X∗, problem (1.10) has a unique solution u satisfying the stability
estimate

‖u‖X 6
1

α
‖f‖X∗ .
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1.3.2. Parameterized Problems. We consider two types of weak formulations of the parameterized
PDE of the form (1.4). In both cases, we modify the bilinear form in (1.9) to depend on the
parameter sequence Z ∈ Γ :

L(u,w;Z) = Y∗〈L(Z)[u], w〉Y.
Additionally, we also view the right hand side f(Z) : Γ → Y∗ as depending on the parameter
sequence.

Definition 1.2. A function u(Z) : Γ → X solves the parameterized PDE (1.4) pointwise in
the weak sense if

(1.14) L(u(Z), w;Z) = Y∗〈f(Z), w〉Y for all w ∈ Y and almost all Z ∈ Γ.

Example 1.4. Now suppose that in Example 1.3, we allow A = A(x, Z) to depend on the
parameter sequence Z ∈ Γ . The pointwise weak formulation of

(1.15)

{
−D · (A(x, Z)Du(x, Z)) = f(x, Z), x ∈ Ω, Z ∈ Γ
u(x, Z) = 0, x ∈ ∂Ω, Z ∈ Γ

is to find u : Γ → H10(Ω) such that for all w ∈ H10(Ω) and almost surely for Z ∈ Γ ,

(1.16)
∫
Ω

(Dw(x))TA(x, Z)D(u(Z))(x) dx =

∫
Ω

f(x, Z)w(x) dx.

Note that if for all Z ∈ Γ , A(x, Z) satisfies (uniform) uniform ellipticity over Z

vTA(x, Z)v > α a.e. x ∈ Ω and for all v ∈ S`−1,

by the Lax-Milgram theorem, we have the pointwise stability estimate

(1.17) ‖u(·, Z)‖H10(Ω) 6
1

α
‖f(·, Z)‖H−1(Ω)

for all Z ∈ Γ .

In order to define the second type of weak solution, we reduce our generality a bit and specify
the previously mentioned Banach spaces to more specific function spaces.

Definition 1.3. For a Banach space X(Ω) of functions over the domain Ω ⊂ Rd and Γ a
measure space with measure defined by the density π(z)dz, we define the tensor product space

X(Ω)⊗ Lqπ(Γ) =
{
u : Ω× Γ → R | ‖u‖X(Ω)

⊗
L
q
π(Γ)

<∞} ,
where

‖u‖X(Ω)⊗Lqπ(Γ) =
∥∥∥‖u‖X(Ω)

∥∥∥
L
q
π(Γ)

Remark 1.1. In these notes, we will always take X(Ω) = Hk(Ω) and q = 2. In this
case, by Fubini’s theorem, we may interchange the order of the norms in the definition of
‖·‖Hk(Ω)⊗L2π(Γ). Then for u ∈ Hk(Ω) ⊗ L2π(Γ), this implies that both u(·, Z) ∈ Hk(Ω) almost
surely in Γ and u(x, ·) ∈ L2π(Γ) almost everywhere in Ω. We can think of this as saying that
u is jointly Hk and L2π in its two domains.

Additionally, for this type of weak solution we allow our differential operator L to induce a
not-necessarily-bilinear form as in [16]. Specifically, suppose that after multiplying the PDE

L(Z)[u] = f
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by a test function w ∈ X(Ω)⊗ Lqπ(Γ) and integrating by parts, we obtain on the left hand side the
operator L : (X(Ω)⊗ Lqπ(Γ))2 → R defined by

(1.18) L(u,w) =

K∑
k=1

∫
Γ

∫
Ω

Sk(u; z)Tk(w)π(z) dx dz

where Sk(·; ·), k ∈ [K] are in general nonlinear operators and Tk(·, ·), k ∈ [K] are linear operators.

Definition 1.4. A function u(x, Z) ∈ X(Ω) ⊗ Lqπ(Γ) solves the parameterized PDE (1.4)
jointly in the weak sense if for L defined by (1.18),

(1.19) L(u,w) =

∫
Γ

∫
Ω

w(x, z)f(x, z)π(z) dx dz for all w ∈ X(Ω)⊗ Lqπ(Γ).

Example 1.5. In the joint weak sense, the second order parameterized elliptic PDE (1.15)
from Example 1.4 is to find u ∈ H10(Ω)⊗ L2π(Z) such that

(1.20)

∫
Γ

∫
Ω

(Dxw(x, z))
TA(x, z)Dxu(x, z)π(z) dx dz

=

∫
Γ

∫
Ω

f(x, z)w(x, z)π(z) dx dz for all w ∈ H10(Ω)⊗ L2π(Γ)
,

where Dx is the weak gradient with respect to x ∈ Ω.

Proposition 1.1. A function u solves problem (1.16) with f ∈ H10(Ω)⊗ L2π(Γ) if and only
if it solves (1.20).

Proof. Assume u ∈ H10(Ω) ⊗ L2π(Γ) satisfies (1.20). Now let w ∈ H10(Ω), φ ∈ C∞C (Γ), and
denote

g(z) =

∫
Ω

[
(Dw(x))TA(x, z)Du(x, z) − f(x, z)w(x)

]
dx.

Then w(x)φ(Z) ∈ H10(Ω)⊗ L2π(Γ), and by virtue of (1.20),∫
Γ

g(z)φ(z)π(z) dz = 0.

Since g(z) ∈ L2π(Γ) (as u ∈ H10(Ω)⊗ L2π(Γ)), the linear functional on L2π(Γ) defined by

φ 7→
∫
Γ

g(z)φ(z)π(z) dz

is zero on C∞c (Γ) which is dense in L2π(Γ). Thus, the aforementioned functional is zero, and so is
g(z) almost surely, satisfying (1.16).

On the other hand, if u solves (1.16) with f ∈ H10(Ω) ⊗ L2π(Γ), the stability estimate (1.17)
guarantees that u ∈ H10(Ω)⊗ L2π(Γ). Integrating both sides of (1.16) over Γ then gives (1.20). �

1.4. Monte-Carlo Methods

Assuming that we can solve a non-parameterized problem, our main goal is to solve the param-
eterized problem (1.4). In practice however, we usually desire some quantities of interest (QoI) of
our solution (1.5). This usually takes the form of statistics of u(Z), such as the expectation, vari-
ance, or higher moments. In cases where the QoI is statistical (that is, we desire some information
of u in expectation), the most straightforward method of solution is the Monte-Carlo method.
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The procedure is as follows. DrawM i.i.d. realizations of the parameter sequence Z as
{
Z(i)
}M
i=1

and let
{
u
(
Z(i)

)}M
i=1

be the ensemble of solutions to the deterministic problem for each parameter
realization. If u is the expectation of u(Z), then the law of large numbers ensures that

uM :=
1

M

M∑
i=1

u
(
Z(i)

)
→ u.

We can actually quantify the rate of this convergence. If we denote ‖w‖ = ‖w‖H10(Ω) =

‖Dw‖L2(Ω), we calculate

E
(
‖u− uM‖2

)
=

1

M2
E

∥∥∥∥∥
M∑
i=1

(u
(
Z(i)

)
− u)

∥∥∥∥∥
2


=
1

M
E
(
‖u(Z) − u‖2

)
since the Z(i) are i.i.d.

=
1

M
V [u(Z)] .

Thus, uM → u in H10(Γ)⊗ (L2π(Γ) at a rate of O(M−1/2) which is unfortunately rather slow. There
are techniques for boosting this rate of convergence such as multi-level Monte-Carlo. However,
these methods are outside the scope of these notes, as we will focus on stochastic Galerkin and
stochastic collocation methods.

1.5. Polynomial Chaos

In order to account for the parameter domain in numerical approximations to solutions of (1.4),
we will use spectral methods. The main idea of spectral methods is to solve for the generalized
Fourier coefficients of the solution making use of the weak formulation of the problem. In our
setting, the generalized Fourier basis will be orthogonal polynomials over the parameter domain.

Definition 1.5. Let {φν}ν∈NN0 be a collection of orthonormal polynomials with respect to
an orthogonalization measure π : Γ → R, which is to say

(1.21)
∫
Γ

φν(z)φη(z)π(z) dz = δν,η

for all multiindices ν, η ∈ NN0 . The generalized polynomial chaos (gPC) expansion of a function
u(Z) is given by

u(Z) =
∑
ν∈NN0

ûνφν(Z),

where the gPC coefficients are calculated as

ûν =

∫
Γ

u(z)φν(z)π(z) dz.

In the multivariate case (that is, when N > 1), we usually construct the gPC basis as a tensor
product of a copies of a univariate one. So if {φk}∞k=0 is a univariate gPC basis, we will assume
that the multivariate polynomials are constructed as

(1.22) φν(Z) =

N∏
n=1

φνn(Zn).
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Note that it is not necessary to assume the use of the same univariate basis in each component. If
we have N univariate bases indexed by n,

{
φ
(n)
k

}∞
k=1

, we can take

(1.23) φν(Z) =

N∏
n=1

φ
(n)
νn (Zn).

When we are dealing with a stochastic problem and the parameter sequence Z represents a
sequence of random variables, it is natural then to let π dz to be the distribution of Z, giving that
the orthonormal polynomial basis φν is then orthonormal with respect to the distribution of Z. In
this case, the coefficients of u simplify to

ûν = E [uφν] .

Additionally when the components of Z are i.i.d. (or at least independent), the tensor product
structure of the multivariate gPC basis (1.22) (or (1.23)) is required.

The benefit of using a gPC expansion corresponding to the distribution of Z is that statistics
of the solution u are easily obtained from the gPC expansion coefficients. For example, assuming
that φ0 = 1, the orthonormality relationship (1.21) gives that Eφν = 0 for all ν 6= 0. Thus,

Eu = E
∑
ν∈NN0

ûνφν = û0.

For the variance, a similar calculation to Parseval’s identity gives

Vu = E (u− Eu)2

= E

 ∑
ν∈NN0 \{0}

ûνφν

2

=
∑
ν∈NN

û2ν.

Table 1.1 lists a few distributions with their corresponding polynomial chaos bases.

Table 1.1. Univariate Distributions and Generalized Polynomial Chaos Bases.

Distribution Density/weight gPC Basis Support

Uniform
1

b− a
Legendre [a, b]

Gaussian
1√
2π
e−x

2/2 Hermite (−∞,∞)

Gamma e−xxα Laguerre [0,∞)

Wigner semicircle
1

π
√
1− x2

Chebyshev [−1, 1]

1.5.1. Spectral Convergence. When a gPC basis is obtained from eigenfunctions of a singular
Sturm-Liouville problem (as are those listed in Table 1.1), we can derive convergence estimates of
the gPC expansion to the original function based on eigenvalues of the Sturm-Liouville problem
and more importantly, the smoothness of the original function. We make these notions precise as
follows.
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Theorem 1.3. Suppose that a univariate gPC basis {φk}k∈N0 satisfies the singular Sturm-
Liouville eigenvalue problem over (a, b) (where a or b can equal ∞)

(1.24) Q(x)φk(x) = −λkφk(x),

where

Q(x) =
1

π(x)
[D (p(x)D) + q(x)] ,

and p(x), π(x) > 0, q(x) > 0 over (a, b), and p(a) = p(b) = 0. Then if PM : L2π → PM is the
projector onto PM = span {φk}

M
k=0 taken by truncating the gPC expansion,

‖u− PMu‖L2π 6
C

λmM
‖Qmu‖L2π ,

when the right hand side exists.

Proof. Letting (·, ·) = (·, ·)L2π , twice applying integration by parts gives

(Qv,w) =

∫b
a

wD (pDv) +

∫b
a

qvw

=

∫b
a

vD (pDw) +

∫b
a

qvw

= (v,Qw) .

Thus, Q is self-adjoint.
In particular

(u,φk) =
(−1)m

λmk
(u,Qmφk)

=
(−1)m

λmk
(Qmu,φk) ,

so long as Qmu ∈ L2π. Applying to the remainder,

‖u− PMu‖2L2π =

∞∑
k=M+1

(u,φk)
2

=

∞∑
k=M+1

1

λ2mk
(Qmu,φk)

2

6
1

λ2mM

∞∑
k=0

(Qmu,φk)
2

=
1

λ2mM
‖Qmu‖2L2π .

Taking square roots gives the desired inequality. �

Example 1.6. Consider the example of Legendre polynomials which solve the Sturm-
Liouville problem (1.24) on the interval [−1, 1] with p(x) = (1 − x2), q(x) = 0, π(x) = 1

2 ,
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and λk = O(k2). If u ∈ Hkπ, note first that

(1.25)

‖Qu‖L2π =
∥∥(1− x2)D2u(x) − 2xDu(x)∥∥

L2π

6
∥∥(1− x2)D2u(x)∥∥

L2π
+ ‖2xDu(x)‖L2

6
∥∥(1− x2)∥∥

L∞
∥∥D2u∥∥

L2π
+ ‖2x‖L∞‖Du‖L2π

6 C‖u‖H2π
Additionally, we can obtain estimates on higher derivatives of Qu as∥∥D`Qu∥∥

L2π
6 C‖u‖H`+2π

.

Indeed, for DQu, we have

(1.26)

‖DQu‖L2π =
∥∥D[(1− x2)D2u− 2xDu]

∥∥
L2π

=
∥∥QDu− 2xD2u− 2Du

∥∥
L2π

6 ‖QDu‖L2π + C‖u‖H2π
6 C‖u‖H3π .

Inductively, we see that∥∥D`Qu∥∥
L2π

=
∥∥D`−1 [QDu− 2xD2u− 2Du

]∥∥
L2π

6 C‖Du‖H`+1π
+ 2
∥∥D`−1xD2u∥∥

L2π

6 C‖u‖H`+2π
,

where the last inequality is obtained through successive applications of the product rule giving
D`−1xD2u = (`− 1)D`u+ xD`+1u.

Thus,
‖Qu‖H`π 6 C‖u‖H`+2π

.

Applying this relationship m times, we obtain

‖Qmu‖L2π 6 C‖u‖H2mπ .

Taking m = k/2 and using that λM = O(M2), Theorem 1.3 then gives us the spectral conver-
gence result

(1.27) ‖u− PMu‖L2π 6 C
1

Mk
‖u‖Hkπ .

Thus, u converges to its gPC expansion at rate dependent on the smoothness of u. The
smoother the function, the faster the convergence.

1.5.2. Finite-Dimensional Multivariate gPC Bases. In the case of univariate gPC expansions, it is
straightforward to truncate the expansion and produce an approximation to the original function, as
considered in the previous section. However, in the case of multivariate polynomials, the selection
of a finite-dimensional basis becomes nontrivial.

We consider a general finite multi-index set Λ(p) ⊂ NN0 indexed by a parameter p. This
parameter is thought of as the polynomial order of the associated approximation. This indexing
scheme will satisfy Λ(0) = {(0, 0, . . . , 0)} the nesting property Λ(p) ⊆ Λ(p + 1). If {φn} We then
define the corresponding basis set

PΛ(p) = span

{
N∏
n=1

φνn | ν ∈ Λ(p)

}
,
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and let M := #Λ(p) be the dimension of the subspace.
We consider here three rules for constructing the index sets. The first is the simplest, the tensor

product (TP) rule defined by choosing

(1.28) ΛTP(p) =

{
ν ∈ NN0 | max

16n6N
νn 6 p

}
,

and we obtain

(1.29) M = #ΛTP = (p+ 1)N.

Next, we consider the total degree (TD) rule

(1.30) ΛTD(p) =

{
ν ∈ NN0 |

N∑
n=1

νn 6 p

}
,

with

(1.31) M =

(
N+ p

N

)
=

(N+ p)!
N!p!

.

Next is the hyperbolic cross (HC) rule

(1.32) ΛHC(p) =

{
ν ∈ NN0 |

N∏
n=1

(νn + 1) 6 p

}
,

with size [18] bounded above by

(1.33) M 6 p(1+ log(p))N−1.

1.5.3. Convergence via Stechkin Estimates. With varying choices of index sets in the multivariate
case, quantifying the convergence of the truncated gPC expansion becomes more subtle. For a
fixed M, we hope to find an index set Λopt

M which minimizes the error u − u
Λ

opt
M

in some sense.
This u

Λ
opt
M

is then the corresponding best M-term approximation to u.
We take this point of view to provide an alternate take on the rate of convergence of gPC

expansions which takes a more general perspective than the argument in Theorem 1.3. We no
longer make use of structure in the gPC coefficients, but use only their summability in weighted
`p norms.

As an aside, when using the standard Fourier basis, the class of functions summable in weighted
`p norms with certain weights coincide with Sobolev spaces. So in a certain sense, the following
notion of convergence can be considered as a generalization of spectral convergence.

We follow the procedure in [24, Section 3], and as a result introduce some notation standard in
compressive sensing.

Definition 1.6. For a sequence of weights ω = (ων)ν∈Λ indexed over the same index set
as the gPC basis, we define the weighted `p space

`ω,p :=

x = (xν)ν∈Λ | ‖x‖ω,p :=

(∑
ν∈Λ

ω2−pν |xν|
p

)1/p
<∞

 , 0 < p 6 2,

with the weighted `0 norm as

‖x‖ω,0 =
∑

ν∈supp(x)

ω2ν.
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Additionally, we define associated function quasi-normed function space

Sω,p :=

{
u(x) =

∑
ν∈Λ

ûνφν(x) | ‖u‖ω,p := ‖û‖ω,p <∞
}
, 0 < p < 1.

Definition 1.7. For a given basis of weighted cardinality M, we define the error in the
best weighted M-term approximation to a vector x ∈ `ω,p as

σM(x)ω,p = inf
z:‖z‖ω,06M

‖x− z‖ω,p,

and associated error in the best weighted M-term approximation to a function u ∈ Sω,p as

σM(u)ω,p = σM(û)ω,p.

We then take u
Λ

opt
M,p

as the minimizer (if it exists), and

Λ
opt
M,p = suppu

Λ
opt
M,p
.

Theorem 1.4. Suppose that the weight sequence ω satisfies ων > ‖φν‖∞ on NN0 and
M > ‖ω‖2∞. If u ∈ Sω,p,
(1.34)

∥∥∥u− u
Λ

opt
M,1

∥∥∥∞ 6 (M− ‖ω‖2∞
)1−1/p

‖u‖ω,p, p < 1.

Notice that the only possible dependence on N is through the∞-norm of the multivariate gPC
basis. This appears to only restrict the regime of sizes of index sets where this estimate is viable
and the necessary summability of u. This dependence should be clarified further though as we
begin linking the ideas of index sets, weights, sparsity, and polynomial degree.

The proof of this result relies on a weighted Stechkin estimate which will involve estimates on
the following intermediate quantity.

Definition 1.8. For a sequence x, let γ = (γj)j∈N denote the non-increasing rearrangement
of the sequence (|xν|

pω
−p
ν )ν∈NN0

and α : N → NN0 the corresponding permutation. We then

define S to correspond to the first k indices of γ satisfying
∑k
j=1ω

2
α(j) 6M, and let the error

in the quasi-best M-term approximation be

σ̃M(x)ω,p = ‖x− xS‖ω,p = ‖xSc‖ω,p.

Thus, xS can be thought of in some sense as taking only the terms of x corresponding to theM
largest “weighted terms.” Note that by definition σM(x)ω,p 6 σ̃M(x)ω,p. This allows us to prove
a Stechkin estimate similarly to [15, Proposition 2.3].

Theorem 1.5 ([24], Theorem 3.2). For p < q 6 2, let x ∈ `ω,p. Then for M > ‖ω‖2∞,
σM(x)ω,q 6 σ̃M(x)ω,q 6

(
M− ‖ω‖2∞

)1/q−1/p
‖x‖ω,p.
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Proof. We work only with the weighted quasi-best estimate for x, xS. We first wish to bound
σ̃M(x)qω,q = ‖xSc‖qω,q by an expression involving ‖x‖ω,p. To this end, we consider

‖xSc‖qω,q =
∑
ν/∈S

|xν|
qω2−qν

6 sup
ν/∈S

|xν|
q−pωp−qν

∑
ν/∈S

|xν|
pω2−pν

6

 1

ω(S)

∑
η∈S

ω2η sup
ν/∈S

|xν|
pω−p

ν

(q−p)/p

‖x‖pω,p

6

 1

ω(S)

∑
η∈S

ω2η|xη|
pω−p

η

(q−p)/p

‖x‖pω,p

6 ω(S)(p−q)/p‖x‖qω,p.

All that remains is to estimate ω(S) from below, since p− q < 0.
Since ω(S) 6 M and S is the longest subset of reordered indices that maintains this weighed

sparsity, ω(S) +ω2α > M where α /∈ S. Since ω2α 6 ‖ω‖
2∞, we have

M− ‖ω‖2∞ 6 ω(S).

Combining with the above and taking the 1/q power gives the desired bound. �

We now apply this bound to obtain L∞ estimates on the convergence of u to its multivariate
gPC using only weighted `p summability of the Fourier coefficients.

Proof of Theorem 1.4. We bound the ∞-norm using the weights as∥∥∥u− u
Λ

opt
M,1

∥∥∥∞ 6 ∑
ν/∈Λopt

M,1

|ûν|‖φν‖∞
6
∑

ν/∈Λopt
M,1

|ûν|ων(1.35)

= σM(u)ω,1.

Theorem 1.5 with q = 1 then gives

σM(u)ω,1 6
(
M− ‖ω‖2∞

)1−1/p
‖u‖ω,p,

as desired. �

In practice, we cannot use this estimate to reduce our truncation error to a desired tolerance,
as the coefficients (ûν)ν∈NN0 are not known. Additionally, though (1.35) suggests that Λopt

M,1 should
consist of the M largest values of |ûν|ων, we would again need to know the gPC coefficients in
advance of any calculations.

As an alternative, we may consider quasi-optimal approximations, that is, calculating Λq−opt
M

with only knowledge of sharp upper bounds on the coefficients (ûν)ν∈NN0 . With the help of compu-
tation friendly upper bounds, it is possible to optimize the Stechkin estimate (1.34) for a given M
to calculate q and hence determine the quasi-optimal index set. In cases where the upper bounds
are not so friendly, an alternative approach forgoing the Stechkin estimate was developed, directly
working on bounding the sum of the coefficients outside of a quasi-optimal index set.
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We will revisit the idea of optimal index sets later, and discuss approaches which proceed to
calculate best M-term approximations with no prior knowledge of the optimal index set.

1.5.4. gPC Expansions of Banach Space Valued Functions. For the remainder of these notes, the
gPC expansion will be considered for Banach space valued functions u : Γ → X where X is a
Banach space of functions. In this case, the only difference is that the coefficients

(1.36) ûν =

∫
Γ

u(z)φν(z)π(z) dz

now take values in X. Unless otherwise specified, we will fix X = Hk(Ω) and identify the Bochner
space Lpπ(Γ ;X) with Hk(Ω) ⊗ Lpπ(Γ). In this case, the coefficients are obtained by integrating out
the parameter, resulting in

ûν(x) =

∫
Γ

u(x, z)φν(z)π(z) dz ∈ Hk(Ω).

All previous notions of convergence still hold in some sense with the spatial domain considered.
For example, the spectral convergence result (1.27) becomes a pointwise estimate in Ω. Addition-
ally, the notions of Definition 1.6 still apply, where the absolute value of any coefficient is replaced
by ‖·‖Hk(Ω). Thus, the analogous result of Theorem 1.4 must take this into account, giving a
pointwise bound on ‖·‖Hk(Ω). This then reads

sup
z∈Γ

∥∥∥u(z) − uΛopt
M,1

(z)
∥∥∥
Hk(Ω)

6
(
M− ‖ω‖2∞

)1−1/p(∑
ν∈Λ
‖û‖p

Hk(Ω)
ω2−pν

)1/p
.

1.6. Stochastic Galerkin

With our in-depth understanding of gPC expansions out of the way, let’s now use them to
produce approximate solutions to PDE again returning to the idea of weak solutions. We will first
introduce stochastic Galerkin methods. Unfortunately, we will not be able to maintain the same
amount of generality, as the formulation is often highly problem dependent. The general structure
though follows the same setup as our derivation of weak solutions.

The main idea is to replace the infinite dimensional stochastic space Lqπ(Γ) with a finite dimen-
sional approximation. We will use a finite dimensional subspace spanned by a gPC basis,

PΛ(p) = span

{
N∏
n=1

φνn | ν ∈ Λ(p)

}
,

where Λ(p) is an index set parameterized by some degree parameter p.
Thus, in the joint weak problem given in Definition 1.4, instead of X(Ω) ⊗ Lqπ(Γ) used as

the solution and test space, we use X(Ω) ⊗ PΛ(p). Thus, when we take test functions w ∈
H10(Ω)⊗ PΛ(p), we can represent these functions in the H10(Ω)-valued gPC expansion

w =
∑

ν∈Λ(p)

ŵνφν,
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with coefficients ŵν ∈ H10(Ω). Since the operators Tk in (1.18) are linear and don’t depend on z,
we can write L(u,w) (without loss of generality considering only one term) as

L(u,w) =

∫
Γ

∫
Ω

S(u(x, z); z)T(w(x, z))π(z) dx dz

=

∫
Γ

∫
Ω

S(u(x, z); z)T

 ∑
ν∈Λ(p)

ŵν(x)φν(z)

π(z) dx dz
=
∑

ν∈Λ(p)

∫
Γ

∫
Ω

S(u(x, z); z)T(ŵν(x))φν(z)π(z) dx dz

=
∑

ν∈Λ(p)

∫
Ω

S̃(u,φν; x)T(ŵν(x)) dx

=
∑

ν∈Λ(p)

(
S̃(u,φν; x), T(ŵν(x))

)
L2(Ω)

=:
∑

ν∈Λ(p)

L̃(u,wν)ν.

where

S̃(u,φν; x) =
∫
Γ

S(u(x, z); z)φν(z)π(z) dz.

As for the right hand side,∫
Γ

∫
Ω

f(x, z)w(x, z)π(z) dx dz =
∑

ν∈Λ(p)

∫
Γ

∫
Ω

f(x, z)ŵν(x)φν(z)π(z) dx dz

=
∑

ν∈Λ(p)

∫
Ω

F(φν; x)ŵν(x) dx

=
∑

ν∈Λ(p)

(F(φν; x), ŵν(x))L2(Ω)

=:
∑

ν∈Λ(p)

(
H−1(Ω)〈F,wν〉H10(Ω)

)
ν
,

where

F(φν; x) =
∫
Γ

f(x, z)φν(z)π(z) dz.

Since w is arbitrary in H10(Ω) ⊗ Lqπ(Γ), we now assume that ŵν above is arbitrary in H10(Ω).
Additionally, we have equality of these two quantities after summing so long as they hold for all
ν ∈ Λ(p). This leads us to the stochastic Galerkin formulation.

Definition 1.9. Let uM =
∑
η∈Λ(p) ûηφη. The stochastic Galerkin formulation of the

joint weak problem (1.19) is to solve the following weak system of PDE: Find û = {ûη}η∈Λ(p) ∈
(H10(Ω))M such that for any w ∈ H10(Ω),(

L̃(uM, w)
)
ν
=
(
H−1(Ω)〈F,w〉H10(Ω)

)
ν

for all ν ∈ Λ(p).

Thus, the stochastic Galerkin formulation removes any stochastic element to the problem,
converting it into a system of deterministic PDE. If one has the ability to solve the weak system
of PDE in some manner, then the solution of the original parameterized problem can also be
obtained. This process is often done using finite element methods which take advantage of the
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weak formulation of the problem, and use the Galerkin method further in the space of H10(Ω) test
functions.

Example 1.7. We provide a concrete example where we start with the original pointwise
PDE and derive the Galerkin formulation the same way we derived the weak formulation.
For some variety, we’ll work with the time-dependent problem

(1.37)


Dtu−Dx · (A(x, Z)Dxu) = f(x, t, Z), Ω× (0, T ]× Γ
u = 0, ∂Ω× (0, T ]× Γ
u = u0, Ω× {t = 0}× Γ

.

We’ll assume a KL expansion in A,

A(x, Z) = Â0(x) +

N∑
i=1

Âi(x)Zi =

N∑
i=0

Âi(x)Zi

where Z0 ≡ 1.
Now we assume a truncated gPC expansion for the solution

uM =
∑

η∈Λ(p)

ûη(x, t)φη(Z) =:

M∑
j=1

ûj(x, t)φj(Z),

where we relabel Λ(p) through some indexing scheme. In the same fashion as before, we
integrate against test functions, but since we’ve discretized our stochastic space, we only
need to use the basis functions φk:

M∑
j=1

Dtûj

∫
Γ

φjφkπ dz−

N∑
0=1

M∑
j=1

Dx(Âi(X)Dxûj)

∫
Γ

ziφjφkπ dz =

∫
Γ

fφkπ dz.

Letting

f̂k =

∫
Γ

fφkπ dz

be the gPC coefficients of f,

eijk =

∫
Γ

ziφjφkπ dz, Bjk =

N∑
i=0

Âieijk, 1 6 j, k 6M,

and using orthonormality in the gPC basis, we can rewrite this equation as

Dtûk −

M∑
j=1

Dx(BjkDxûj) = f̂k.

In matrix form, we arrive at the deterministic system of PDE

Dtû−Dx(BDxû) = f̂

where û = (ûk)
M
k=1, B =

(
Bjk
)
16j,k6M, and f̂ =

(
f̂k

)M
k=1

.
Notice that from this point forward, we can consider the weak formulation of the system

and arrive at a setup like that given in Definition 1.9. Thus, this is a more general formu-
lation of the problem. Any solver can be used to solve the deterministic problem, however, if
spectral or finite element methods are being used, we reduce the system into its weak form in
the spatial variable anyways and make a discretization in the space of test functions. Since
[16] chooses to break the spatial variable into a finite element expansion, Definition 1.9 (which
mimics their setup and notation) goes directly to the spatial weak form.
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We remark here that the coefficients recovered from exactly solving the resulting deterministic
system may not be and are likely not the gPC coefficients of the true solution. There are special
cases where we do obtain exact recovery, such as operators which are linear in the parameters.
Proving the consistency of a stochastic Galerkin method necessitates showing some relationship
between the recovered coefficients and the true gPC coefficients. This becomes problem dependent
and is beyond the scope of these notes. Instead, we focus on sampling methods such as stochastic
collocation.

1.7. Stochastic Collocation

Let us review the path we’ve taken so far for solutions of pointwise parameterized PDE in the
form of (1.4). If we first consider the analogous concept of a weak solution in only the parameter
domain (which has not yet been discussed), we can view this process as requiring that a solution
u induces a functional L(x, Z)u(x, Z) − f(x, Z) which is zero on L2π(Γ). In order to test that this
functional is in fact zero, we apply it to test functions in w ∈ L2π(Γ). We can then require that the
resulting problem in the physical domain is satisfied pointwise or weakly (where the latter results
in the joint weak formulation of Definition 1.4).

However, instead of using all of L2π(Γ) as the space of test functions, it suffices to use a basis
{φν}ν∈NN0

(perhaps a gPC basis?). Thus, we can view the weak problem in only the parameter
domain as requiring

(1.38) (L(x)u(x), φν)L2π(Γ) = (f(x), φν)L2π(Γ) for all φν, with ν ∈ NN0 .

Notice that this relationship requires that Lu− f is orthogonal to span{φν | ν ∈ NN0 } = L2π(Γ).
Thus, Lu − f ≡ 0 as a functional and by the Riesz-representation theorem is therefore zero as a
function in L2π(Γ).

Now in the stochastic Galerkin method, we no longer use the entire space

span
{
φν | ν ∈ NN0

}
,

and instead truncate it. In the case of gPC bases, we can consider various degree rules (1.28)-(1.32)
to construct a finite dimensional subspace to test the functional against and produce a discrete
solution. Since (at least in the elliptic case), we require the space of test functions to be the same as
the space of solutions, we also discretize the parameter dependence of the solution u representing
it as a truncated gPC expansion. The system then results in simply finding the coefficients of u
in the truncated gPC expansion, and (1.38) reduces to a system of deterministic PDE. In some
convenient cases, we can take advantage of structure in the gPC basis to evaluate the integrals
arising in (1.38). Often, the integrals involve only polynomials in the parameter domain and can
therefore be evaluated using a numerical quadrature rule which is exact for some polynomial degree.
However, in general, such techniques are not necessarily available.

With this process in mind as motivation, we now discuss stochastic collocation. There are
many ways to link collocation (e.g. pseudo-spectral) techniques to spectral/Galerkin techniques
which we may touch on, but for now, we begin by discussing the interpolation approach. For more
information, see [7, Section 4.4] As previously discussed, the systems resulting from a Galerkin
discretization become complicated and very dependent on the gPC basis used.

To keep things simple and remove any dependence on a gPC basis, we instead work pointwise
in Z. Let

{
Z(i)
}M
i=1
⊂ Γ be a set of parameter values where we wish to fix the system (1.4) and

solve in physical space. We denote these as collocation points. We follow the setup of [16] where all
solutions in physical space are approximated using finite element methods, however, any convergent
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method can suffice (in fact, if we don’t wish to analyze any discretization error in the physical
domain, we can assume these solutions are exact). This creates an ensemble

{
uJh(·, Z(i))

}M
i=1

of approximate solutions in Wh(Ω) where Wh(Ω) is a finite element space corresponding to a
triangulation Th of Ω with maximum mesh size h > 0, and Jh = dimWh(Ω). Our goal is to use
these sample solutions to reconstruct an approximation to u in the parameter domain.

In light of our insistence on polynoimal expansions of the solution in the parameter domain,
we will use this ensemble to construct a global polynomial approximation for u(Z),

uJh,M(x, y) =

M∑
m=1

cm(x)φm(Z).

For now, we neither specify {φm}
M
m=1 as gPC polynomials nor the cm as the gPC coefficients of

u(·, Z). In fact, even when we do let our polynomial basis be a gPC basis, the cm will not in general
correspond to gPC coefficients. We do recall some previous notation however. Supposing that M
is determined by the length of the polynomial expansion which is parameterized by some degree
parameter p through an index set Λ(p) ⊂ NN0 , that is,M := |Λ(p)|, we have uJh,M(x, ·) ∈ PΛ(p)(Γ)

for any x ∈ Ω. Note that we will freely swap between the equivalent indexing schemes {φm}
M
m=1

and {φν}ν∈Λ(p) depending on which is most convenient.
Now, since we considerM collocation points and our expansion of uJh,M hasM terms, we can

invert the linear system

(1.39)
M∑
m=1

cm(x)φm

(
Z(i)

)
= uJh

(
x, Z(i)

)
for i = 1, . . . ,M.

to obtain the coefficients cm as linear combinations of the sample solutions. Thus, we arrive at a
fully discrete approximation

uJh,M ∈Wh(Ω)⊗ PΛ(p)(Γ).

where the discretization in the spatial domain is through the finite element space and the dis-
cretization in the parameter space is through the polynomial subspace. Notice that the system
(1.39) imposes the interpolation condition

uJh,M

(
·, Z(i)

)
= uJh

(
·, Z(i)

)
for all i = 1, . . . ,M.

Notice that our only use of of the basis {φm}
M
m=1 is in the solution of system (1.39). Thus, if

this is our only concern, it would make sense to choose the basis as interpolatory over the set of
collocation points, that is,

(1.40) φm

(
Z(i)

)
= δm,i.

This reduces solving (1.39) to setting the coefficient cm to be the approximated solution at Z(m),

cm(x) = uJh

(
x, Z(m)

)
.

For an arbitrary sequence of collocation points in one-dimension, the Lagrange fundamental poly-
nomials satisfying the delta condition (1.40) can be calculated as

(1.41) `m(Z) =

M∏
i=1
i 6=m

Z− Z(i)

Z(m) − Z(i)
,
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where each φm is of degree M− 1. In the case of multiple dimensions, the tensor product

`ν(Z) =

N∏
n=1

`νn(Zn)

will satisfy (1.40)

`ν

(
Z(η)

)
=

N∏
n=1

`νn

(
Z(ηn)

)
=

N∏
n=1

δνn,ηn = δν,η

over the tensor product grid of collocation points,

(1.42)
N⊗
n=1

{
Z(i)
}M
i=1

=

{(
Z(ηn)

)N
n=1

}
η∈ΛTP(M)

=:
{
Z(η)
}
η∈ΛTP(M)

,

where ΛTP(M) is the tensor product index set (1.28).
We can at this point suggest a comparison with Monte-Carlo sampling. In both methods, we

obtain an ensemble of solutions on Γ , then reconstruct an approximation to the solution over the
entire parameter domain. In Monte-Carlo approximation, our reconstruction is simply averaging
over random samples, whereas with stochastic collocation, we are polynomially interpolating struc-
tured samples. It remains to be discussed how the samples are structured and whether the rate of
convergence can beat O(M−1/2) obtained in L2π(Γ) for Monte-Carlo sampling. As we have analyzed
the convergence of gPC expansions with respect to the regularity of the approximated function, we
expect that if our solutions are smooth in the parameter domain (which they often are), we should
be able to obtain faster convergence than Monte-Carlo which simply requires that the solution is
in L2π(Γ).

1.8. Sparse Grids

The analysis of the interpolation approach of stochastic collocation depends on our choice of
collocation points. This section is devoted to a discussion of constructing sparse grids, which carry
significantly fewer points than the tensor product grid (1.42). We will also comment on the rates
of convergence of the interpolation operator over these sparse grids, offering a comparison with
convergence rates of full tensor product grids.

1.8.1. Sparse Grid Construction. The sparse grids used in [16] are generalizations of those first
proposed in [26]. The idea is to construct a sparse proxy to an interpolation operator as a linear
combination of tensor product interpolation operators. We begin by clarifying our one-dimensional
notation that we combine for multiple dimensions.

For each dimension, we define a one-dimensional level of the approximation, ln ∈ N+, n =

1, . . .N. This level indexes the one-dimensional set of collocation points used in the nth dimension,{
Z
(k)
n,ln

}m(ln)

k=1
⊂ Γn,

where m(ln) is the total number of collocation points used in the nth direction. We require that
m satisfies

m(l) : N+ → N+, m(0) = 0, m(1) = 1, m(l) < m(l+ 1).

The Lagrange interpolation operator in the nth dimension on this collocation grid

U
m(ln)
n : C0(Γn)→ Pm(ln)−1(Γn)



24 ‖ Uncertainty Quantification Comprehensive Exam Notes

is defined as above,

U
m(ln)
n [v](Zn) =

m(ln)∑
k=1

v
(
Z
(k)
n,ln

)
φ
(k)
n,ln

(Zn) ,

where φ(k)
n,ln

∈ Pm(ln)−1 is the Lagrange interpolant as in (1.41) corresponding to the point Z(k)
n,ln

.

We also define U
m(0)
n = 0, and define the difference or detail operator

∆
m(ln)
n = U

m(ln)
n − U

m(ln−1)
n .

Note then that we have the telescoping identity

(1.43) U
m(l)
n =

l∑
i=1

∆
m(i)
n .

Now, we make our definitions in the multivariate case. We take l ∈ NN+ to be a multi-index
capturing the levels in each dimension, and L ∈ N+ is the total level of the sparse grid. We now
tensor product the detail operators

∆m(l) =

N⊗
n=1

∆
m(ln)
n

into theN-dimensional hierarchical surplus operator, and define the Lth level generalized sparse
grid operator by

I
m,g
L =

∑
g(l)6L

∆m(l).

The function g : NN+ → N is a strictly increasing function (in the sense that for i, j ∈ NN+ , i < j
pointwise implies g(i) < g(j)) constructing the index set for a given level L. Letting g take on the
corresponding rules in (1.28), (1.30), and (1.32), we interpolate over levels in the tensor product,
total degree, and hyperbolic cross index sets for “degree” L respectively. The fact that g is strictly
increasing implies that the corresponding index set is a lower set, that is, if i < j ∈ {` | g(`) 6 L},
then i ∈ {` | g(`) 6 L}. We discuss the relationship between the index sets used for collocation and
corresponding polynomial index sets below.

Notice that with the tensor product rule (defined for level index sets in (1.48)), applying (1.43)
in each dimension gives

(1.44) Im,TPL =

N⊗
n=1

U
m(L)
n ,

that is, we obtain the N-dimensional interpolation operator on the tensor grid (1.42). Thus, by
truncating the sum of hierarchical surplus operators over the tensor product level index set, we
are truncating the decomposition of the tensor product grid interpolation operator, where the de-
composition is in terms of multi-level tensor product interpolating operators (since the hierarchical
surplus operators are linear combinations of tensor product interpolating operators, see Proposition
1.2 below). The benefits of the sparse grid interpolation are generally analyzed by considering the
amount of error that the level index set captures in its corresponding interpolations [27].

Proposition 1.2. We can write the sparse grid operator as the linear combination of
tensor product interpolating operators

I
m,g
L =

∑
g(l)6L

∑
k∈{0,1}N

(−1)|k|Um(l−k) =
∑
g(j)6L

∑
k∈{0,1}N
g(j+k)6L

(−1)|k|Um(j),
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where

Um(l) =

N⊗
n=1

U
m(ln)
n .

Proof. The first equality is given by [27, Proposition 1.2]. The second is found from the
change of variables j = l− k and the fact that g(j+ k) 6 L implies g(j) 6 L. �

In light of Proposition 1.2, the necessary set of collocation points for the sparse grid operator
(that is, the titular sparse grid), is given as

(1.45) H
m,g
L =

⋃
g(l)6L

N⊗
n=1

{
Z
(k)
n,ln

}m(ln)

k=1
,

that is, the union over the index set of levels of all tensor grids defined by these level multi-indices.
We will use ML to denote the size of the sparse grid.

Now that we are only using interpolants of the solution rather than gPC expansions, the
coefficients no longer directly translate to solution statistics. On the other hand, the interpolating
formula gives a natural quadrature formula to calculate these QoI:

E[uJh,M](x) =

ML∑
i=1

uh

(
x, Z(i)

)
wi,

with quadrature weights

wi = Eφi =
∫
Γ

φi (z)π(z) dz,

and

V[uJh,M](x) =

ML∑
i=1

w̃iu
2
Jh

(
x, Z(i)

)
− E[uJh,M]2(x)

with weights
w̃i = Vφi,

so long as the interpolating polynomials are independent (which does not seem like a natural
assumption). We can then simply pre-compute the weights on the desired sparse grid and then
plug in the interpolating coefficients resulting from an ensemble of solutions to the desired problem.

It is also possible to describe the associated polynomial basis corresponding to the sparse grid
operator. This was first used [5] to provide a fair comparison between stochastic Galerkin and
collocation where both methods made use of the same finite dimensional polynomial subspace of
L2π(Γ). In the case where the level l is simply the number of collocation points used, that is,
m(l) = l, the polynomial index set corresponding to the sparse grid is

(1.46) Λg(L) =
{
ν ∈ NN0 | g(ν+ 1) 6 L

}
,

where rather than a gPC basis, the underlying polynomial basis is

(1.47) PΛg(L) = span

{
N∏
n=1

Zνnn | ν ∈ Λg(L)

}
,

the tensor product of Taylor monomials. Thus, for

(1.48) g(l) = max
n=1,...,N

(ln − 1),
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(1.49) g(l) =

N∑
n=1

(ln − 1),

(1.50) g(l) =

N∑
n=1

lg(ln)

we obtain the tensor-product, total degree, and hyperbolic cross polynomials respectively. Further
modifications can be made for more complicated m (like the definition discussed in Section 1.8.2
for Clenshaw-Curtis points) which can describe the popular sparse Smolyak subspace as well. See
[5, Proposition 1] for further details.

1.8.2. Choice of Collocation Points. The survey [16] discusses two types of collocation points on
the interval Γn = [−1, 1]: Clenshaw-Curtis points and Gaussian points. Clenshaw-Curtis points
are derived as extrema of Chebyshev polynomials,

Z
(i)
l = − cos

(
π(i− 1)

m(l) − 1

)
, for i = 1, . . . ,m(l),

where Z(1)
l = 0 if m(l) = 1. In this case, we should choose M to grow exponentially,

m(l) =

{
1, if l = 1

2l−1 + 1 if l > 1
.

Then the Clenshaw-Curtis (CC) points are nested at each level. This is a very convenient, since
all corresponding tensor product grids must then necessarily be nested, and points are reused at
all levels of the sparse grid construction. Additionally, sparse grids at different levels are nested.
Thus, if one wishes to increase the level of approximation, deterministic solutions need only be
calculate on the new nodes, reusing the previous computations. Another reason to use CC points
(or any set of nested points) is that when g is the total degree rule, the sparse grid operator does in
fact interpolate the points in the sparse grid [6]. Additionally, as we have near logarithmic bounds
on the Lebesgue constant (that is, the operator norm of the one-dimensional interpolation operator
U : C0 → C0), sparse grid interpolation using CC points is optimal up to logarithmic factors in
terms of the number points in the sparse grid [6]. Finally CC points have nice quadrature properties
for “not too analytic” functions. In particular, Clenshaw-Curtis knots allow for convergence near
the level of Gaussian points [28].

Gaussian points are derived as the “optimal” quadrature abscissas for polynomials integrated
against a weight πn in the sense that univariate Gaussian quadrature with M + 1 nodes is exact
for polynomials of up to degree 2M + 1. In the context of stochastic problems, we let π be the
density of the sequence of random variables Z satisfying the finite dimensional noise assumption.
In the case that the components of Z actually are independent, we define each πn as the density

of Zn. The Gaussian points
{
Z
(i)
l

}m(l)

i=1
are defined as the zeros of φm(l) (Z), the m(l)th gPC

polynomial corresponding to the weight πn. On the other hand, if the components of Z are not
independent, π, the density of Z does not factor. We instead consider an auxiliary product density
π̂ : Γ → R+ given by

π̂(y) =

N∏
n=1

π̂n (Zn) .
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We also assume that ‖π/π̂‖∞ <∞. This allows us to estimate quantities in the original probability
space such as

‖u‖2H10(Ω)⊗L2π(Γ) 6
∥∥∥π
π̂

∥∥∥∞‖u‖2H10(Ω)⊗Lπ̂(Γ),

the latter of which can be approximated and analyzed by considering a sparse grid with respect to
the Gaussian points of the factors of π̂.

1.8.3. Convergence Results. We now discuss the error in the exact solution and the solution
arising from stochastic collocation with Lagrange interpolation on tensor and sparse grids. As in
the survey [16], we provide the general outline and do not consider the proofs of the main results
which in general require detailed results from polynomial approximation theory which is outside
the scope of these notes.

1.8.3.1. Regularity Assumptions. We begin by assuming that the true solution admits an
analytic extension to the complex plane in each dimension in a neighborhood of the polyellipse

(1.51) Eµ =
⊗

16n6N

Int {zn ∈ C | zn = cosh(µn) cos(θ) + i sinh(µn) sin(θ), θ ∈ [0, 2π)}

for all x ∈ Ω. In general, this is product of the regions of convergence of the one-dimensional
Chebyshev or Legendre series for an analytic function where µn is the smallest quasi-radial co-
ordinate of the polyellipse passing through a singularity of the restriction of u to C in the nth
dimension [7, Theorem 7].

In the special case of differential operators L which have affine dependence on the parameter
sequence Z, that is, we can express the operator as

(1.52) L = L0 +

N∑
n=1

ZnLn,

this assumption of analyticity can be clarified as being separated into each parameter dimension as
follows. We restrict our solution u to vary only in the nth parametric dimension by fixing a point
in

Γ∗n =

N∏
j=1j 6=n

Γj

and Z∗n ∈ Γ∗n. Then there exist regions Σn := {z ∈ C | dist(z, Γn) 6 τn} for some constants τn > 0
(independent of our choice of Z∗n) such that u(x, Z∗n, ·) admits an analytic extension on Σn. Another
way of stating this is that the function u : Γn → C0(Γ∗n;H10(Ω)) admits an analytic extension on
Σn. It is this affine case to which we restrict our current (and the majority of our future) discussion.
Note that the stationary (that is, time independent) diffusion equation (cf. (1.37) where the time
dependence is removed) fits this model, where we take

Ln = −D · (Ân(x)D).

1.8.3.2. Typical Error Analysis. We now consider our discrete solution obtained from sto-
chastic collocation on a sparse grid uJh,ML

:= I
m,g
L [uJh ] and provide bounds on its difference from

the exact solution. We proceed by splitting this error into separate pieces:

‖u− uJh,M‖ 6 ‖u− uN‖+ ‖uN − uN,Jh‖+
∥∥uN,Jh − I

m,g
L [uN,Jh ]

∥∥
:= I+ II+ III,
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where we let ‖·‖ := ‖·‖L2π(Γ)⊗H10(Ω). Notice that by bounding the error in this norm, we can obtain
physical bounds on the expectation of the error as

‖E[u− uJh,ML
]‖H10(Ω) 6 E‖u− uJh,ML

‖H10(Ω) 6 ‖u− uJh,ML
‖L2π(Γ)⊗H10(Ω),

by Jensen’s and Hölder’s inequalities.
The error I is a result of truncating the original differential equation to depend on only N

parameters. As discussed in section 1.2.2, we can generally use a KL expansion to parameterize
any stochastic process in the original equation in terms of a countable sequence Z. Truncating this
sequence gives some amount of “problem level” truncation error which requires further analysis.
The structure of the KL expansion and knowledge of the underlying covariance function are useful
for bounding this type of error [20], but we take the perspective of the finite-dimensional noise
assumption, thus assuming I = 0. Thus, in the remaining errors, we replace uN by u.

The error II is due to the finite element approximation in the spatial variable x. Since all
sampling methods considered will necessitate a spatial solver, this error will persist in each analysis.
As such we refer to the finite element method theory which gives, depending on the spatial regularity
of u(·, Z),

II = O(ht)

where we recall that h parameterizes the mesh size of the finite element approximation. In general,
t is related to the polynomial degree of the finite element basis. The specific regime for t depends
on the spatial regularity of u, and the implicit constant is also dependent on u and its relationship
to the parameter domain.

Thus, we arrive at the error III resulting from the interpolation of the sample solutions found
from the collocation grid. Again, as in [16], we consider the sparse grid corresponding to CC points
with g determined by the total degree rule. Analogous results hold for Gaussian abscissas where
the error considered is only able to be bounded in ‖·‖H10(Ω)⊗L2π̂(Γ)

rather than the more restrictive
L∞(Γ) norm in the parameter domain as we consider ahead. A standard reduction at this point is
to assume that the spatially discretized solution uh is unaffected in its parametric regularity, and
thus, all assumptions of analyticity of u carry over to uh. Thus, we consider III with uh replaced
by u. As previously mentioned, since the errors being bounded are from polynomial interpolation
and the traditional literature handles bounding the error of approximating continuous functions
by polynomials we are motivated to instead consider all error in ‖·‖ := ‖·‖H10(Ω)⊗L∞(Γ). Results in
L2π(Γ) follow immediately since (Γ,B(Γ), π dz) is assumed to be a probability space.

The first step is to provide bounds for one-dimensional interpolation, that is, consider∥∥∥u− U
m(ln)
n [u]

∥∥∥∞,
for u ∈ C0(Γn;H10(Ω)). For Lm(ln) the Lebesgue constant of Um(ln)

n , (that is, the operator norm

of Um(ln)
n : C0(Γn) → Pm(ln)−1 where Pm(ln)−1 is treated as subspace of C0(Γn)) which for CC

points has the upper bound

Lm(ln) 6
2

π
log(m(ln) − 1) + 1

=
2

π
log
(
2ln−1 + 1− 1

)
+ 1

=
2

π
log(2)(ln − 1) + 1

6 ln.
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Letting Em(ln)−1 = minw∈Pm(ln)−1
‖u−w‖C0 and w∗ the minimizing polynomial, we have

(1.53)

∥∥∥u− U
m(ln)
n [u]

∥∥∥
C0
6 ‖u−w∗‖C0 +

∥∥∥Um(ln)
n [u−w∗]

∥∥∥
C0

6
(
1+ Lm(ln)

)
Em(ln)−1.

We now make use of the following lemma on Em(ln)−1 and best polynomial approximations.

Lemma 1.1 ([20], Lemma 4.4). For u ∈ C0(Γn;H10(Ω)) admitting an analytic extension in
Σn = {z ∈ C | dist(z, Γn) 6 τn}, then

(1.54) Em(ln)−1 6
2

e2rn − 1
e−2rn(m(ln)−1) max

z∈Σn
‖u(z)‖H10(Ω),

where

0 < rn =
1

2
log

(
2τn

|Γn|
+

√
1+

4τ2n
|Γn|2

)
.

Proof Sketch. The main idea is to bound the error by the error of a Chebyshev polynomial
approximation of degree m(ln) − 1 denoted Tm(ln)−1(z). The domain of convergence given in
(1.51) as Ern is the ellipse of quasi-radial coordinate rn to be determined. Under the change of
variables z = cos(θ), Tm(ln)−1(cos(θ)) becomes the truncation of the Fourier series for u(cos(θ)).
In order for this series to converge, since the imaginary part of θ is the quasi-radial coordinate rn,
the Fourier coefficients ak must decay at a rate of O(e−krn). The constant in this convergence
can be determined in terms of u as ‖ak‖H10(Ω) 6 2e

−krn maxz∈Σn ‖u(z)‖H10(Ω) (see the argument
used in Proposition 3.3 for a rigorous proof using only the formula for the Chebyshev coefficients)
. Thus, truncating the Chebyshev series and using that the L∞ norm of Chebyshev polynomials is
bounded by 1,

Em(ln)−1 6
∞∑

k=m(ln)

‖ak‖H10(Ω)

6
∞∑

k=m(ln)

2e−krn max
z∈Σn

‖u(z)‖H10(Ω)

6
2e−(m(ln)−1)rn−rn

1− e−rn
max
z∈Σn

‖u(z)‖H10(Ω)

=
2e−(m(ln)−1)rn

ern − 1
max
z∈Σn

‖u(z)‖H10(Ω).

The last step is solving for the quasi-radial coordinate rn as defining the largest ellipse Ern which
fits in Σn. This is determined to be

rn = log

(
2τn

|Γn|
+

√
1+

4τ2n
|Γn|2

)
.

Taking rn ← rn
2 gives the desired result. �

Combining (1.53) and (1.54) gives

(1.55)
∥∥∥u− U

m(ln)
n [u]

∥∥∥∞ 6 4

e2rn − 1
lne

−2rn2
ln
θ(u),
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and we can bound the one-dimensional detail operator by twice the larger error of the two inter-
polating operators, ∥∥∥∆m(ln)

n [u]
∥∥∥∞ 6 8

e2rn − 1
lne

−2rn2
ln−1

θ(u),

where we take θ(u) to be the maximum of the quantities maxz∈Σn ‖u‖H10(Ω) over all N dimensions.
In the below estimates, we assume without loss of generality that u← u

θ(u) and thus θ(u) = 1.
1.8.3.3. Tensor Grid Error. In this section, we use the one dimensional results to derive error

bounds on tensor grid stochastic collocation. The result given is for CC full tensor grids, whereas
the original result in [4] is for Gaussian full tensor grids.

Theorem 1.6 (cf. [4], Theorem 4.1). For CC tensor product grid (that is, the sparse grid
using g defined by (1.48)) of level L and u ∈ L2π(Γ) ⊗ H10(Ω) satisfying the affine version of
analyticity with quasi-radial analyticity parameters rn, we have∥∥u− Im,TPL

∥∥ 6 C(r)LNM−r/N
L

where r = min16n6N rn.

Proof. We proceed as in the style of the proof of [20, Lemma 3.4] which extended the original
result from [4]. Though a bit more involved, this method allows a simple derivation of the factor
LN (which we do not compare to the original suppressed constant factor depending on N in [4,
Theorem 4.1]).

We first make note of the implicit identification

U
m(L)
(n) : C0(Γ ;H10(Ω))→ C0(Γ ;H10(Ω))

U
m(L)
(n) := U

m(L)
n ⊗

N⊗
i=1
i 6=n

Ii

where Ii : C0(Γn;H10(Ω)) → C0(Γn;H10(Ω)) is the one-dimensional identity operator in the ith
dimension. We then have ∥∥∥Um(L)

(n)

∥∥∥ 6 ∥∥∥Um(L)
n

∥∥∥
where ‖·‖ denotes the operator norm. Henceforth, we thus drop the parentheses on the n-
dimensional operator.

Now, we calculate

I− Im,TPL = I−

N⊗
n=1

U
m(L+1)
n by (1.44)

= I−

N−1⊗
n=1

U
m(L+1)
n ⊗

(
U
m(L+1)
N − I

)
−

N−1⊗
n=1

U
m(L+1)
n ⊗ I

=

N−1⊗
n=1

U
m(L+1)
n ⊗

(
I− U

m(L+1)
N

)
+

(
I−

N−1⊗
n=1

U
m(L+1)
n

)
⊗ I.

Applying this identity recursively on the last term gives

I− Im,TPL =

N∑
d=1

d−1⊗
n=1

U
m(L+1)
n ⊗

(
I− U

m(L+1)
d

)
⊗ IN−d.
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By the previous discussion and our one-dimensional estimates∥∥(I− Im,TPL

)
[u]
∥∥
C0(Γ ;H10(Ω))

6
N∑
d=1

d−1∏
n=1

∥∥∥Um(L+1)
n

∥∥∥∥∥∥I− U
m(L+1)
d

∥∥∥‖I‖N−d

6
N∑
d=1

Ld−1
m(L+1)

4

e2rd−1
(L+ 1)e−2rd2

L+1

6
4

e2r − 1
e−2r2

L+1
N∑
d=1

(L+ 1)d

6 C(r)LNe−r2
L+2
.

Note that we have made use of the embedding C0(Γn;H10(Ω)) ⊂ C0(Σn;H10(Ω)) to identify I −
U
m(L+1)
n with its operator on the region of analyticity of u, Σn. As a result, its norm is multiplied

by ‖u‖C0(Σn;H10(Ω)) which we have assumed is less or equal to θ(u) 6 1.
The final step is to relate the level to the number of points in the tensor grid ML. Since each

dimension uses m(L+ 1) = 2L + 1 points, we have ML = (2L + 1)N . Taking logarithms gives

1

N
log(ML) = log

(
2L + 1

)
6 2L − 1 6 2L+2.

Finally then
C(r)LNe−r2

L+2
6 C(r)LNM−r/N

L ,

which gives us the desired bound. �

1.8.3.4. Isotropic Sparse Grid Error. We now give the result of applying this one-dimensional
argument dimension by dimension over the sparse grid operator. The argument proceeds much
the same as the proof of Theorem 1.6, but more care is necessary to efficiently bound the sums of
one-dimensional interpolation operators over the total degree index sets.

Theorem 1.7 ([20], Theorems 3.10 and 3.11). For isotropic CC sparse grids with total degree
rule (1.49), and u ∈ L2π(Γ) ⊗ H10(Ω) satisfying the affine version of analyticity, we have the
following estimates.

• Algebraic convergence (0 < L 6 N
log(2))∥∥u− I

m,g
L [u]

∥∥∞ 6 C0(r)max{1, C1(r)}NM
−µ1
L

with µ1 =
r

1+ log(2N)
, r = min

16n6N
rn.

• Subexponential convergence (L > N
log(2))∥∥u− I

m,g
L [u]

∥∥∞ 6 C2(r)max{1, C1(r)}NM
µ3
L e

− Nr

21/N
M
µ2
L

with µ2 =
log(2)

N(1+ log(2N))
and µ3 =

C4(r)

1+ log(2N)
.

1.8.3.5. Anisotropic Sparse Grid Error. The results corresponding to sparse grids can be
further accelerated with anisotropy. So far, we have provided equal weighting in each dimension
when constructing our grid indexing scheme, producing symmetric grids. However, if we know that
our function is “less analytic” in certain dimensions as measured by the quasi-radii rn of analyticity
regions, we can shift our attention to that dimension by providing more collocation points. We
reflect this by weighting the indices in the g(l) : NN+ → N formulae. Thus, we introduce a weight
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vector α ∈ RN+ with αmin = min16n6N αn, and use it to weight the indices in the level index sets
{l | g(l) 6 L}. In the case of the sparse Smolyak grid with CC points and total degree rule, we take

(1.56) g(l) =

N∑
n=1

αn(ln − 1) 6 αminL.

A dimension with a higher weight is thus less likely to contribute indices to the index set.
As mentioned above, a natural (and as proved in [19], optimal) choice of weights is to take

αn = rn, αmin = r = min16n6N rn, and R(N) =
∑N
n=1 rn, since those dimensions in which

the function is smoother get penalized more in the weighting scheme. This will mean that the
dimensions in which the exponential rate of convergence in the one dimensional approximation
(1.55) are lower will be used at higher levels than their peers, boosting the exponential rate of
convergence. Combining these one-dimensional estimates in a similar manner as the isotropic sparse
grid case where in particular, care must be taken to account for the reduced anisotropic number of
points resulting from the anisotropic sparse grid, we obtain an improvement on Theorem 1.7 given
as the following convergence results.

Theorem 1.8 ([19] Theorem 3.8). For anisotropic CC sparse grids with total degree rule
(1.56), and u ∈ L2π(Γ)⊗H10(Ω) satisfying our assumption of analyticity in the affine case, we
have the following estimates.

• Algebraic convergence (0 < L 6 R(N)
r log(2))∥∥u− I

m,g
L [u]

∥∥∞ 6 Ĉ(r,N)M−µ1
L

with µ1 =
r(log(2)e− 1/2)

log(2) +
∑N
n=1 r/rn

• Subexponential convergence (L > R(N)
r log(2))∥∥u− I

m,g
L [u]

∥∥∞ 6 Ĉ(r,N)max{1, C1(r)}NM
µ2
L e

−R(N)M
µ2
L

with µ2 =
log(2)

R(N)
(
log(2) +

∑N
n=1 r/rn

) .
For sequences rn →∞, the constant Ĉ(r,N) is bounded as N→∞.

The final remark that rn →∞ is a natural assumption for problems in the setup we’ve consid-
ered. It is generally the case that for affine parametric operators derived from KL expansions, the
size of the analyticity regions of resulting solutions are inversely proportional to the product of the
infinity norm of eigenfunctions and the square root of eigenvalues in the KL expansion. Since this
product tends to zero, we observe increasingly large regions of analyticity in N.

1.8.3.6. Discussion, Comparison, and the Curse of Dimensionality. We first notice that
the subexponential decay is always asymptotically faster than the algebraic decay. However, the
subexponential decay usually requires a high level sparse grid which is less computationally feasible.
Thus, we restrict our attention to comparing the algebraic convergence.

We first notice that the tensor grid result suffers from the curse of dimensionality. As N
increases, the algebraic rate of convergence decays, even worse than Monte-Carlo (when exactly
this occurs depends on the analyticity region of the solution u). On the other hand, the exponent
in the algebraic convergence for the isotropic sparse grid decays in N at a rate of log−1(2N) > 1

N .
Thus, the sparse grid is able to reduce the curse of dimensionality to only logarithmic decay in
N. Additionally, for certain amounts of analyticity the term max(1, C1(r))N may be bounded
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in N which further reduces any deterioration within high dimensional problems. Finally, in the
anisotropic sparse grid, we see that if

∑∞
n=1 r/rn < ∞, the exponent in the algebraic error is no

longer dependent on N, and only depends on the bound of this sum. Since the constant Ĉ(r,N) is
also bounded in N when rn → ∞, we know then that the entire convergence rate is independent
of N, and there is no curse of dimensionality. For functions with large and quickly growing regions
of analyticity, the algebraic convergence rates can then rival and surpass those of Monte-Carlo. It
turns out that a similar rate of convergence holds even for anisotropic full tensor grids, however,
the constant is worse.

1.8.4. Sparse Grids for Optimal Polynomial Subspaces. By the previously considered setup, the re-
sulting interpolation is in a polynomial subspace entirely determined by the sparse grid (recall the
space spanned by Taylor monomials defined by (1.47) indexed by (1.46)). However, as we discussed
in Section 1.5.3, we can attempt to restrict our approximate solution in parameter space to lie in
the span of a set of multivariate polynomials indexed by an optimal or at least quasi-optimal index
set Λq−opt

M . For the following discussion, we again consider the space of Taylor monomials, that is

P
Λ

q−opt
M

= span

{
φν(Z) =

N∏
n=1

Zνnn | ν ∈ Λq−opt
M

}
.

Assuming that this polynomial subspace is quasi-optimal in the L∞ sense, that is∥∥∥u− u
Λ

q−opt
M

∥∥∥
L∞(Γ)

≈ inf
w∈PΛ s.t. |Λ|=M

‖u−w‖L∞(Γ),

we can hope that the sparse grid polynomial subspace captures the quasi-optimal subspace. How-
ever, the index set Λq−opt

M may be much smaller than a sparse grid index set containing it, making
our estimates on the quasi-best M-term error useless. Our goal then is to produce a sparse grid
method conforming to the quasi-optimal index set.

We assume that the quasi-optimal index set Λq−opt
M is a lower set, and define the quasi-optimal

sparse grid interpolating operator similarly to the previous discussion as

I
Λ

q−opt
M

=
∑

ν∈Λq−opt
M

∆m(ν+1).

and the resulting sparse grid

H
Λ

q−opt
M

=
⋃

ν∈Λq−opt
M

N⊗
n=1

{
Z
(k)
n,νn+1

}m(νn+1)

k=1
,

for some collection of one-dimensional collocation points to be determined. By virtue of an analog
of Proposition 1.2 and the fact that Λq−opt

M is a lower set, we immediately obtain I
Λ

q−opt
M

: C0(Γ)→
P
Λ

q−opt
M

. Additionally, we want as little waste as possible in the number of interpolation points we

use, and so we require M =
∣∣∣HΛq−opt

M

∣∣∣. This is satisfied when we take m to be the identity, and
require that successive levels of collocation points are nested, i.e., increasing from νn to νn + 1

just adds one additional collocation point.
We can then use the argument to derive (1.53) on the quasi-optimal sparse grid operator giving∥∥∥u− I

Λ
q−opt
M [u]

∥∥∥
L∞(Γ)

6
(
1+ L

Λ
q−opt
M

)∥∥∥u− u
Λ

q−opt
M

∥∥∥
L∞(Γ)

,

where L
Λ

q−opt
M

is the Lebesgue constant for the quasi-optimal sparse grid interpolating operator.
Thus, the goal is to add new points to our running list of collocation points in a manner that keeps
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the Lebesgue constant low as a function of M. The discussion in [16] appeals to greedy searches,
where for the K− 1 one-dimensional collocation points{

Z(k)
}K−1
k=1

=: ZK−1

(where we are suppressing any dependence on a dimension n), the next point is chosen using rules
such as

(i) Z(K) = argmax
ξ∈Γ

K−1∏
k=1

∣∣∣ξ− Z(k)
∣∣∣

(ii) Z(K) = argmax
ξ∈Γ

λZK−1(ξ)

(iii) Z(K) = argmin
ξ∈Γ

max
y∈Γ

λZK−1,ξ(y),

where λZ is the Lebesgue function

λZ(ζ) := max
‖u‖L∞(Γ)61

|UZ[u](ζ)| =

K∑
k=1

|`k(ζ)|,

for `k the kth Lagrange interpolating polynomial corresponding to the collocation points Z. Note
that LZ = maxζ∈Γ λZ(ζ). We can summarize these rules as follows:

(i) The next point should be farthest away from the current points in a sense similar to
geometric mean.

(ii) The next point should be that which maximizes the Lebesgue function. We can think of
this point as (at least) one of the points that produces the L∞ error in the interpolation.

(iii) The next point should minimize the resulting Lebesgue constant.
As of 2015, no theoretical bounds were available for the Lebesgue constants, but experiments
show promising results. A final remark is that attempting to produce an N-dimensional set of
interpolating points using the aforementioned algorithms forgoing the sparse grid structure entirely
is “complex, ill-conditioned, and computationally impractical for more thanN = 2” [16]. This is also
somewhat supported by a previous assertion that even constructing the N-dimensional Lagrange
interpolating polynomials and corresponding interpolation operator through these points is “not
an easy matter,” but “there exist means for doing so” [16].



CHAPTER 2

Compressive Sensing for Function Approximation

2.1. Sparse Polynomial Interpolation

We now return to polynomial interpolation on bases other than Lagrange interpolating poly-
nomials. For simplicity, we restrict our attention to scalar valued functions u : Γ → C (where, to
match the analysis in [24], we allow our functions to take values over the complex numbers) and
suppose that u is represented as a gPC expansion

u(Z) =
∑

ν∈Λ⊂NN0

ûνφν(Z),

where {φν}ν∈NN0
is orthonormal with respect to the orthogonalization measure π dz. Supposing

that we have truncated our expansion to a finite index set with |Λ| = M, and given a set of
interpolating points

{
Z(k)
}K
k=1
⊂ Γ (where we now allow K 6=M), if we obtain a vector of function

values y =
(
u
(
Z(k)

))K
k=1

, we can calculate the coefficients of the gPC expansion by inverting the
system ∑

ν∈Λ
ûνφν

(
Z(k)

)
= u

(
Z(k)

)
for all k ∈ [K].

Assembling the sampling matrix

Ak,ν := φν

(
Z(k)

)
and the vector of coefficients û = (ûν)ν∈Λ, we write the system in matrix form as

Aû = y.

Recall that in Section 1.7, we took the polynomial basis as the Lagrange interpolating polynomials
for
{
Z(k)
}M
k=1

, so that A = I , the M×M identity matrix. However, since we now allow K 6=M,
our system may be under- or over-determined. Since, in our application, obtaining the ensemble of
function values is equivalent to obtaining the expensive deterministic finite element solution to a
PDE, we hope to take K small. Thus, we will only be considering under-determined systems with
K�M, making A a wide matrix.

In order to select a solution from the possibly infinitely many, we impose further constraints on
the coefficient vector. Since in the context of the affine parametric PDE, solutions are analytic in Γ ,
we should expect fast decay of the gPC coefficients. Indeed, in the context of weighted cardinality
and summability of the gPC coefficients (which we should view as a proxy for smoothness and will
later be shown to be a consequence of analyticity), the weighted Stechkin estimate of Theorem
1.5 shows decay at the rate of s1−1/p for approximating û with coefficients supported on sets of
weighted cardinality s. Thus, a natural assumption is to suppose that the coefficient vector û is
weighted s-sparse, that is, ‖û‖ω,0 :=

∑
ν∈supp ûω

2
ν 6 s�M.

Before considering the weighted setup, we first review the traditional results for standard spar-
sity. These results are summarized in the following theorem.

35



36 ‖ Compressive Sensing for Function Approximation Comprehensive Exam Notes

Theorem 2.1 ([15] Corollary 12.34). If W = maxν∈Λ ‖φν‖L∞(Γ) for |Λ| =M and we draw

K & sW2 log4(M)

i.i.d. samples
{
Z(k)
}K
k=1

from the orthogonalization measure π dz, then with probability ex-
ceeding 1−M− log3(M), we can approximately recover u from the polluted samples y = Aû+ e

with error satisfying ‖e‖2 6 η as the solution û] of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖ 6 η,

in the sense that for u] =
∑
ν∈Λ û

]
νφν,∥∥u− u]

∥∥
2
6
A1√
s
σs(u)1 +A2

η√
K

for σs(û)1 = inf‖z‖06s ‖û− z‖1 the `1error in the best s-term approximation of û.

The main issue with this theorem is the reliance on the L∞ norm of the gPC basis, as, even for
nice bases, this produces exponential blow-up as the number of dimensions N increases requiring
too many samples. In a following section, we will see examples of these issues and the benefit of
introducing weighted `1 minimization and weighted sparsity.

2.2. Coefficient Weighting

We return to the setup defined in 1.5.3, where we consider weighted coefficient and function
norms. For convenience, we recall Definitions 1.6 and 1.7, and Theorems 1.4 and 1.5 (where the
latter is used to prove the former).

Definition 1.6. For a sequence of weights ω = (ων)ν∈Λ indexed over the same index set
as the gPC basis, we define the weighted `p space

`ω,p :=

x = (xν)ν∈Λ | ‖x‖ω,p :=

(∑
ν∈Λ

ω2−pν |xν|
p

)1/p
<∞

 , 0 < p 6 2,

with the weighted `0 norm as
‖x‖ω,0 =

∑
ν∈supp(x)

ω2ν.

Additionally, we define associated function quasi-normed function space

Sω,p :=

{
u(x) =

∑
ν∈Λ

ûνφν(x) | ‖u‖ω,p := ‖û‖ω,p <∞
}
, 0 < p < 1.

Definition 1.7. For a given basis of weighted cardinality s, we define the error in the best
weighted s-term approximation to a vector x ∈ `ω,p as

σs(x)ω,p = inf
z:‖z‖ω,06s

‖x− z‖ω,p,

and associated error in the best weighted s-term approximation to a function u ∈ Sω,p as

σs(u)ω,p = σs(û)ω,p.

We then take u
Λ

opt
s,p

as the minimizer (if it exists), and

Λopt
s,p = suppu

Λ
opt
s,p
.
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Theorem 1.4. Suppose that the weight sequence ω satisfies ων > ‖φν‖∞ on NN0 and
s > ‖ω‖2∞. If u ∈ Sω,p,
(2.1)

∥∥∥u− u
Λ

opt
s,1

∥∥∥∞ 6 (s− ‖ω‖2∞)1−1/p ‖u‖ω,p, p < 1.

Theorem 1.5 ([24], Theorem 3.2). For p < q 6 2, let x ∈ `ω,p. Then for s > ‖ω‖2∞,
σs(x)ω,q 6 σ̃s(x)ω,q 6

(
s− ‖ω‖2∞

)1/q−1/p
‖x‖ω,p.

With the these alternatives to traditional `p norms, we are able to state a revised version of
Theorem 2.1.

Theorem 2.2 ([24], Theorem 6.1). For a finite index set |Λ| =M and weights ων > ‖φν‖∞,
if s > 2‖ω‖2∞ and we draw

K & s log3(s) log(M)

i.i.d. samples
{
Z(k)
}K
k=1

from the orthogonalization measure π dz, then with probability 1 −
M− log3(s), we can approximately recover u from the polluted samples y = Aû + e with error
satisfying ‖e‖2 6 η as the solution û] of

minimize
z∈CM

‖z‖ω,1 subject to ‖Az− y‖2 6 η,

in the sense that for u] =
∑
ν∈Λ û

]
νφν,∥∥u− u]

∥∥∞ 6∥∥u− u]
∥∥
ω,1
6 B1σs(u)ω,1 + B2η

√
s

K
,(2.2) ∥∥u− u]

∥∥
2
6
C1√
s
σs(u)ω,1 + C2

η√
K
.(2.3)

2.3. Weighted Null Space Property and Robust Sparse Recovery

In order to prove Theorem 2.2, we must make use of weighted versions of the traditional
conditions which provide robust sparse recovery. We begin with the weighted robust null space
property (NSP).

Definition 2.1 ([24], Defintion 4.1). For a weight sequence ω, a matrix A ∈ CK,M is said
to satisfy the weighted robust null space property of order s with constants ρ ∈ (0, 1) and τ > 0 if

‖vS‖2 6
ρ√
s
‖vSC‖ω,1 + τ‖Av‖2 for all v ∈ CM and all S ⊂ [M] with ω(S) 6 s

where subscripting a vector with an index set (e.g., S) denotes either restricting that vector to
the lower dimensional subset corresponding to S (i.e., vS ∈ R|S| with (vS)i = vS(i)) or setting
the entries at the indices chosen by the index set to be zero (i.e., (vS)i = 0 for all i ∈ S and
(vS)i = vi for all i /∈ S).

The robust weighted null space property allows for the robust sparse recovery of vectors via
weighted `1 minimization with estimates as in Theorem 2.2.

Theorem 2.3 ([24], Corollary 4.3). Let A ∈ CK,M satisfy the weighted robust null space
property of order s with constants ρ ∈ (0, 1) and τ > 0. For x ∈ CM and y = Ax + e with
‖e‖2 6 η, let x] solve the weighted `1 minimization program

minimize
z∈C

‖z‖ω,1 subject to ‖Az− y‖ 6 η.
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Then the error in the recovered solution can be bounded in terms of the error in the weighted
best s-term estimate and measurement error as∥∥x− x]∥∥

ω,1
6 B1σs(x)ω,1 + B2η

√
s,∥∥x− x]∥∥

2
6
C1√
s
σs(x)ω,1 + C2η,

where the latter bound holds under the assumption that s > 2‖ω‖2∞, and all constants depend
only on ρ and τ.

Proof. In order to prove this theorem, we will use the weighted robust NSP on x − x]. In
particular, we use the weighted robust NSP to prove a bound on the difference between x and
any vector z in terms of the weighted best s term estimate, measurement error, and a quantity
which acts nicely when z = x] solves (2.3). Additionally, when z = x] solves (2.3), we know that
Az− y = A(z− x) which has 2-norm bounded by η, and so our bound can more generally involve
this quantity. The proper bounds end up being given by the following `ω,1 and `2 distance bounds.

Lemma 2.1 ([24], Theorem 4.1). If A ∈ CK,M satisfies the weighted robust null space property
of order s with constants ρ ∈ (0, 1) and τ > 0, then for all x, z ∈ CM, we have

(2.4) ‖x− z‖ω,1 6
1+ ρ

1− ρ
(‖z‖ω,1 − ‖x‖ω,1 + 2σs(x)ω,1) +

2τ
√
s

1− ρ
‖A(x− z)‖2,

and if s > 2‖ω‖2∞,
(2.5) ‖x− z‖2 6

C1√
s
(‖z‖ω,1 − ‖x‖ω,1 + 2σs(x)ω,1) + C2‖A(x− z)‖2.

Proof of Lemma 2.1. We first claim that y = argmin‖z‖ω,06s ‖x− z‖ω,1 is composed of
entries of x on some index set S with weighted cardinality ω(S) 6 s, and thus, the minimizer of
this problem exists by minimizing over the finite set {xS | ω(S) 6 s}. Indeed, if supp(y) = S,

‖x− xS‖ω,1 =
∑
ν/∈S

|xν|ων 6
∑
ν/∈S

|xν|ων +
∑
ν∈S

|xν − yν|ων = ‖x− y‖ω,1.

Thus, we now take y = xS giving

σs(x)ω,1 = ‖x− xS‖ω,1 = ‖xSC‖ω,1.

Now since we expect to obtain a bound involving −‖x‖ω,1, we keep the identity

(2.6) 0 = ‖xS‖ω,1 + ‖xSC‖ω,1 − ‖x‖ω,1 = ‖xS‖ω,1 + σs(x)ω,1 − ‖x‖ω,1
in our pocket to apply when necessary.

Since we wish to apply the weighted robust NSP, we begin by letting x− z = v and consider

‖v‖ω,1 = ‖vSC‖ω,1 + ‖vS‖ω,1.

If we can obtain a bound from the NSP involving the weighted `1 norm of vS, we can apply it
to the second term. Indeed, the Cauchy-Schwarz inequality followed by the weighted robust NSP
gives

‖vS‖ω,1 =
∑
ν∈S

|vν|ων 6

√∑
ν∈S

|vν|2
√∑
ν∈S

ω2ν =
√
s‖vS‖2 6 ρ‖vSC‖ω,1 + τ

√
s‖Av‖2.

Thus,

(2.7) ‖v‖ω,1 6 (1+ ρ)‖vSC‖ω,1 + τ
√
s‖Av‖2.
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For the weighted `1 estimate, it just remains to bound ‖vSC‖ω,1. We use our “pocket-identity”
(2.6) and the weighted robust NSP again to obtain

‖(x− z)SC‖ω,1 6 ‖xSC‖ω,1 + ‖zSC‖ω,1 + σs(x)ω,1 + ‖xS‖ω,1 − ‖x‖ω,1
= 2σs(x)ω,1 + ‖(x− z)S + zS‖ω,1 + ‖zSC‖ω,1 − ‖x‖ω,1
6 2σs(x)ω,1 + ‖vS‖ω,1 + ‖zS‖ω,1 + ‖zSC‖ω,1 − ‖x‖ω,1
6 2σs(x)ω,1 + ρ‖vSC‖ω,1 + τ

√
s‖Av‖2 + ‖z‖ω,1 − ‖x‖ω,1.

Moving ρ‖vSC‖ω,1 to the other side and dividing by 1 − ρ gives a bound for ‖vSC‖ω,1 which we
plug into (2.7) to obtain

‖x− z‖ω,1 6
1+ ρ

1− ρ

(
2σs(x)ω,1 + ‖z‖ω,1 − ‖x‖ω,1 + τ

√
s‖Av‖2

)
+
1− ρ

1− ρ
τ
√
s‖Av‖2

=
1+ ρ

1− ρ
(2σs(x)ω,1 + ‖z‖ω,1 − ‖x‖ω,1) +

2τ
√
s

1− ρ
‖Av‖2.

Thus, (2.4) holds as desired.
We now prove (2.5) by way of the weighted Stechkin inequality in Theorem 1.5. Now letting

S be the index set for the quasi-best s term estimate to v, that is σ̃s(v)ω,2 = ‖vSC‖ω,2 with
ω(S) 6 s, we have

‖v‖2 6 σ̃s(v)ω,2 + ‖vS‖2.
The former can be bounded by the weighted Stechkin inequality as

σ̃s(v)ω,2 6
1√

s− ‖ω‖2∞
‖v‖ω,1,

and the latter by the robust weighted NSP as

‖vS‖2 6
ρ√
s
‖vSC‖ω,1 + τ‖Av‖2

6
ρ√

s− ‖ω‖2∞
‖v‖ω,1 + τ‖Av‖2.

Combining, and using the `1 bound (2.4) derived above, we obtain

‖v‖2 6
1+ ρ√
s− ‖ω‖2∞

‖v‖ω,1 + τ‖Av‖2

6
(1+ ρ)2

(1− ρ)

√
s− ‖ω‖2∞

(2σs(x)ω,1 + ‖z‖ω,1 − ‖x‖ω,1) +

(
τ+

2τ(1+ ρ)
√
s

(1− ρ)
√
s− ‖ω‖∞

)
‖Av‖2.

The last step is rewriting the denominator
√
s− ‖ω‖2∞ in terms of

√
s. But since s− 2‖ω‖2∞ > 0,

adding s to both sides, taking square roots and then reciprocals gives
1√
s
>

1
√
2

√
s− ‖ω‖2∞

.

Thus, adding a factor of
√
2 to each fraction allows us to rewrite the denominator as

√
s giving

(2.5) with constants

C1 =

√
2(1+ ρ)2

1− ρ
, C2 = τ+

2
√
2τ(1+ ρ)

1− ρ
.

�
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We now return to the proof of Theorem 2.3 using the bounds in Lemma 2.1. When z = x] the
solution of the minimization program (2.3), we know that since x is feasible for (2.3),

∥∥x]∥∥
ω,1
6

‖x‖ω,1. The differences of norms in (2.4) and (2.5) are then negative and we immediately obtain
the desired reconstruction bounds by the fact that A(x−x]) = y−Ax] which has 2-norm bounded
by η.

�

2.4. Weighted Restricted Isometry Property

Instead of directly showing the weighted robust NSP for the sampling matrix, we appeal to the
weighted restricted isometry property (RIP) which implies the weighted robust NSP. In the next
section, we will then show that with high probability, the sampling matrix satisfies the weighted
RIP. We begin with the definition of weighted RIP constants.

Definition 2.2 ([24], Definition 1.3). For A ∈ CK,M, s > 1, and a weight sequence ω, the
ω-RIP constant δω,s for A is the smallest number for which

(1− δω,s)‖x‖22 6 ‖Ax‖
2
2 6 (1+ δω,s)‖x‖22

for all x ∈ CM with ‖x‖ω,0 6 s. We say that A satisfies the weighted restricted isometry
property (ω-RIP) if δω,s is sufficiently small (where the “sufficient” depends on the context).

Proposition 2.1. We can write the weighted restricted isometry constant as

(2.8) δω,s = max
ω(S)6s

‖A∗SAS − I‖,

where the norm is the operator 2-norm, and subscripting by S represents restriction of A to
the columns of the index set S.

Proof. For any ω(S) 6 s, we have A∗SAS− I ∈ C|S|,|S| is Hermitian. By the spectral theorem,
A∗SAS − I = Q∗DQ is unitarily diagonalizable. Since Q is unitary

∥∥A∗SAS − I∥∥ = ‖D‖, where for
any z ∈ S|S|−1,

‖Dz‖22 =
|S|∑
i=1

λ2i z
2
i 6 λ

2
max,

and thus, ‖D‖ = |λmax| (where equality is realized by taking z to be the canonical basis vector
corresponding to the index of λmax). Additionally,

sup
z∈S|S|−1

|z∗(A∗SAS − I)z| = sup
z∈S|S|−1

|(Qz)∗DQz| = sup
w∈S|S|−1

|w∗Dw| = sup
w∈S|S|−1

∣∣∣∣∣∣
|S|∑
i=1

λiw
2
i

∣∣∣∣∣∣.
By an analogous argument to the one showing ‖D‖ = |λmax|, this quantity must also equal |λmax| =∥∥A∗SAS − I∥∥.

By identifying the set of vectors x ∈ CM with ‖x‖ω,0 6 s as the set of all vectors in C|S| for
some ω(S) 6 s by restricting to their support and rewriting (2.8) as

|x∗(A∗A− I)x|

‖x‖22
6 δω,s,

δω,s can be written

δω,s = max
ω(S)6s

sup
x∈C|S|

|x∗(A∗SAS − I)x|

‖x‖22
= max
ω(S)6s

sup
z∈S|S|−1

|z∗(A∗SAS − I)z| = max
ω(S)6s

‖A∗SAS − I‖

where the last equality follows from the previous paragraph. �
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Now, we prove that the ω-RIP implies the ω-NSP.

Theorem 2.4 ([24],Theorem 4.5). Let A ∈ CK,M have ω-RIP constant

δω,3s < 1/3

where we only consider s > 2‖ω‖2∞. Then A has the robust weighted null space property of
order s with constants τ =

√
1+ δω,3s/(1− δω,3s) and ρ = 2δω,3s/(1− δω,3s).

Proof. The goal will be for any ω(S) 6 s to bound ‖vS‖2 by a quantity involving the weighted
`1 norm of vSC . It seems likely that in the process of using the ω-RIP to bound ‖vS‖2, we will only
encounter ‖vSC‖2. This ends up being the biggest sticking point and motivates the start of the
bounding, so we will start by providing bounds for (almost) this quantity in terms of the weighted
`1 norm.

Recall that in the proof of the weighted Stechkin estimate, Theorem 1.5, we were able to
exchange from the `2 norm to the weighted `1 norm by paying a power of (s − ‖ω‖2∞)−1. The
technique used here was to make sure that the `2 norm being bounded was of a vector whose entries
were sorted to be smaller than those considered in the norm bounding it which allowed us to insert
the weight sequence. Thus, we analogously start by constructing the non-increasing rearrangement
of |vν|ω−1

ν , and then segmenting SC reordered in this manner into blocks S1, S2, . . . of size to be
determined. At the very least, we will want to apply ω-RIP or derive bounds involving s, so we
will assume that ω(S`) 6 s.

Now restricting v to one of these index sets, we wish to bound

‖vS`‖
2
2 =

∑
ν∈S`

v2ν =
∑
ν∈S`

(
|vν|ω

−1
ν

)2
ω2ν 6 s

(
max
η∈S`

|vη|ω
−1
η

)2
.

Taking square roots, our hierarchical reordering of |vν|ω−1
ν then comes in handy to bound last term.

Again since our goal is to get to the weighted `1 norm, we multiply by ω2ν on top and bottom
and sum over the block with larger entries (which allows us to make use of weighted cardinality as
well). To summarize, for ` > 2,

‖vS`‖2 6
√
s

1

ω(S`−1)

∑
ν∈S`−1

ω2νmax
η∈S`

|vη|ω
−1
η

6
√
s

1

ω(S`−1)

∑
ν∈S`−1

ω2ν|vν|ω
−1
ν

=
√
s

1

ω(S`−1)

∥∥vS`−1∥∥ω,1.
A lower bound on ω(S`−1) will make this estimate ready to use in the remainder of the proof. In
order to handle as much information in each block, we make sure that the weighted cardinality of
S`−1 is maximal, that is

s− ‖ω‖2∞ 6 ω(S`−1) 6 s,

since if this lower bound did not hold, we could add the next weight in the non-increasing re-
arrangement and still maintain ω(S`−1) 6 s which we have already assumed. Note that in general,
this lower bound is only possible to enforce for every block but one. However, we only need it to
hold for the last blocks (since it is impossible to step lower than the first block), and so we allow the
first block to simply contain the remaining indices necessary without necessarily reaching weighted
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cardinality above s− ‖ω‖2∞. With this choice and our assumption that s > 2‖ω‖2∞, we obtain

(2.9) ‖vS`‖2 6
√
s

s− ‖ω‖2∞
∥∥vS`−1∥∥ω,1 6 2

√
s

s+ (s− 2‖ω‖2∞)
∥∥vS`−1∥∥ω,1 6 2√

s

∥∥vS`−1∥∥ω,1.
Note that we’ve recovered the factor of s−1/2 required by the ω-NSP as well!

Now that we have this bound, we may proceed with the start of bounding ‖vS‖2. Since (2.9)
is unavailable for ` = 1, we prefer to work with

‖vS + vS1‖2 =

∥∥∥∥∥∥v−
∑
`>2

vS`

∥∥∥∥∥∥
2

,

where the left hand side bounds ‖vS‖2 as S ∩ S1 = ∅. We now make use of the ω-RIP to give

(2.10)

‖vS + vS1‖
2
2 6

1

1− δω,2s
‖A(vS + vS1)‖

2
2

=
1

1− δω,2s
〈A(vS + vS1), A(vS + vS1)〉

=
1

1− δω,2s

〈
A(vS + vS1), Av−

∑
`>2

AvS`

〉

6
1

1− δω,2s

|〈A(vS + vS1), Av〉|+∑
`>2

|〈A(vS + vS1), AvS`〉|


6

√
1+ δω,2s
1− δω,2s

‖vS + vS1‖2‖Av‖2 +
1

1− δω,2s

∑
`>2

|〈A(vS + vS1), AvS`〉|,

where the last line results from applying Cauchy-Schwarz followed by the ω-RIP.
We may be tempted to apply this same argument to the second term, however, the resulting

constant cannot be bounded by one, a requirement for theω-NSP. Instead, we apply a more nuanced
argument taking advantage of the fact that S, S1, and S` are mutually disjoint and therefore the
restrictions of v on each of these sets are orthogonal. Indeed, this gives

|〈A(vS + vS1), AvS`〉| =
∣∣〈A∗S∪S1∪S`AS∪S1∪S`(vS + vS1), vS`〉∣∣

=
∣∣〈A∗S∪S1∪S`AS∪S1∪S`(vS + vS1), vS`〉+ 〈vS + vS1 , vS`〉∣∣

=
∣∣〈(A∗S∪S1∪S`AS∪S1∪S` − I) (vS + vS1), vS`〉∣∣

6 δω,3s‖vS + vS1‖2‖vS`‖2.

Combining with our `2 bound (2.9) we find,

|〈A(vS + vS1), AvS`〉| 6
2δω,3s√

s
‖vS + vS1‖2

∥∥vS`−1∥∥ω,1.
Plugging into (2.10), dividing by ‖vS + vS1‖2, and bounding all ω-RIP constants by the ones for
largest weighted sparsity level δω,3s, we have

‖vS‖2 6 ‖vS + vS1‖2

6

√
1+ δω,3s
1− δω,3s

‖Av‖2 +
2δω,3s

(1− δω,3s)
√
s

∑
`>1

‖vS`‖ω,1

6

√
1+ δω,3s
1− δω,3s

‖Av‖2 +
2δω,3s

(1− δω,3s)
√
s
‖vSC‖ω,1.
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Thus, we arrive at the ω-NSP with constants τ =
√
1+ δω,3s/(1 − δω,3s) and ρ = 2δω,3s/(1 −

δω,3s) where the latter is bounded by one by the assumption that δs,3s < 1/3. �

2.5. Tools from High Dimensional Probability

In this section, we present the tools necessary for proving the ω-RIP property for the sampling
matrix with high probability in Section 2.6. We begin with the characterization of sub-gaussian
random variables following the treatment in [29].

Proposition 2.2 ([29], Proposition 2.5.2). The following are equivalent:

(1) The tails of X satisfy

P(|X| > t) 6 2 exp
(
−t2/K2

)
for all t > 0.

(2) The moments of X satisfy

(E|X|p)1/p 6 K
√
p for all p > 1.

(3) The MGF of X2 satisfies

E exp
(
λ2X2

)
6 exp

(
K2λ2

)
for all λ such that |λ| 6

1

K
.

(4) The MGF of X2 is bounded at some point, namely

E exp
(
X2/K2

)
6 2

(5) Additionally, if EX = 0, the MGF of X satisfies

E exp(λX) 6 exp
(
K2λ2

)
for all λ ∈ R.

The constants in each property are within absolute multiplicative constants of one another.

Proof. We always start by setting X → X/K noting that each property is multiplicatively
homogeneous.

(1) =⇒ (2): Using the layer cake representation of |X|p, we find

E|X|p =

∫∞
0

P(|X|p > s) ds

=

∫∞
0

ptp−1P(|X| > t) dt

6 2
∫∞
0

ptp−1 exp
(
−t2

)
dt

= p

∫∞
0

2t(t2)p/2−1 exp
(
−t2

)
dt

= p

∫∞
0

up/2−1 exp(−u) du

= pΓ(p/2).

We make use of Stirling’s formula

(2.11) Γ(x) =
√
2πxx−1/2e−x exp

(
θ(x)

12x

)
for all x > 0,

where 0 6 θ(x) 6 1. We then obtain the upper bound

Γ(x) 6
√
2πxx−1/2 exp

(
−x+

1

12x

)
.
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Dividing by xx and taking logarithms, we obtain

log
(
Γ(x)

xx

)
=
1

2
log(2π) −

1

2
log(x) − x+

1

12x

which is clearly negative at 2π and has derivative

−
1

2x
− 1−

1

12x2
6 0.

Thus, for any x > 2π, we know that Γ(x) 6 xx. On the compact interval [1/2, 2π] Γ(x) is uniformly
bounded from above, and xx > 0 from below. Then for all x > 1/2, we have that Γ(x) 6 Cpxx for
some absolute constant C > 1. Applying this to our bound for the moment of X, for all p > 1,

E|X|p 6 Cpp
(p
2

)p/2
6 Cpppp/2.

Taking 1/p powers and using that p1/p has a global maximum at e, we have

‖X‖Lp 6 Ce
1/e√p

as desired.
(2) =⇒ (3): Considering

E exp
(
λ2X2

)
= 1+

∞∑
p=1

λ2pEX2p

p!
6 1+

∞∑
p=1

λ2p(2p)p

p!
,

and using Stirling’s approximation to give p! = Γ(p + 1) > (Cp)p for some C > 0 an absolute
constant, we have

E exp
(
λ2X2

)
6 1+

∞∑
p=1

(Cλ2)p =
1

1− Cλ2
for all Cλ2 6 1.

Now since since 1− Cλ2 > e−2Cλ
2
for Cλ2 < c 6 1/2 small enough, we know

E exp
(
λ2X2

)
6 exp

(
2Cλ2

)
,

for all Cλ2 6 c ≡ |λ| 6
√
2c 1√

2C
6 1√

2C
as desired.

(3) =⇒ (4): Take λ = log(2)/K.
(4) =⇒ (1): Taking squares and exponentials and applying Markov’s inequality,

P[|X| > t] = P[exp
(
X2
)
> exp

(
t2
)
]

6 exp
(
−t2

)
E exp

(
X2
)

6 2 exp
(
−t2

)
as desired.

(3) =⇒ (5): We begin by proving the magic inequality

ex 6 x+ ex
2

for all x ∈ R.

We do this by showing f(x) = x+ex
2
−ex is strictly convex with global minimum f(0) = 0. Taking

second derivatives f ′′(x) = 2ex
2
(1+ 2x2) − ex. Dividing by ex, we then wish to show

1 < 2ex
2−x(1+ 2x2).
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This follows from the fact that 1+ 2x2 > 1 and the minimum value of x2 − x is −1/4. Thus,

1 <

(
16

e

)1/4
= 2e−1/4

6 2ex
2−x

< 2ex
2−x(1+ 2x2).

Multiplying by ex then gives

0 < 2ex
2

(1+ 2x2) − ex = f ′′(x)

as desired. Since f ′(x) = 1 + 2xex
2
− ex = 0 when x = 0, we know that x = 0 is the lone critical

point of f and is indeed the global minimizer by strict convexity. Thus, the inequality holds.
Now, this inequality allows us to compare the moment generating function of X and X2, and

Property (3),

E exp(λX) 6 EλX+ E exp
(
λ2X2

)
= E exp

(
λ2X2

)
6 exp

(
λ2
)

when |λ| 6 1, since EX = 0. Now, we just consider the case when |λ| > 1. By Cauchy’s inequality,

E exp(λX) 6 exp
(
λ2/2

)
E exp

(
X2/2

)
6 exp

(
λ2/2

)
exp(1/2) 6 exp

(
λ2/2+ λ2/2

)
= exp

(
λ2
)
.

(5) =⇒ (1): We end with a similar argument to (4) =⇒ (1), but must be a bit more careful.
Multiplying by λ > 0 and exponentiating, we have

P[X > t] = P[exp(λX) > exp(λt)]

6 exp(−λt)E exp(λX)

6 exp
(
−λt+ λ2

)
.

Optimizing for λ, we have a minimizer at λ = t/2, giving

P[X > t] 6 exp
(
−t2/4

)
.

Repeating for −X and using that (5) holds for all λ ∈ R, we know that P[−X > t] 6 exp
(
−t2/4

)
as well. Property (1) follows by the union bound. �

Definition 2.3 ([29], Definition 2.5.6). A random variable satisfying any of Properties (1)–
(5) is called sub-gaussian. We define the sub-gaussian norm of X, ‖X‖ψ2, to be the smallest
K for which Property (1) holds. By the equivalence of (1)–(5), we can replace K in each
property by C‖X‖ψ2, where C > 0 is an absolute constant depending on the property. Thus,
up to this absolute constant ‖X‖ψ2 is the smallest constant for which each of the properties
holds.

Example 2.1. A Rademacher random variable ε is a mean zero, unit variance, symmetric
Bernoulli random variable with distribution

ε =

{
1, with probability 1

2

−1, with probability 1
2 .

Since P(|ε| > t) = 0 6 2 exp
(
−t2/K2

)
for all t > 1, and since P(|ε| > t) = 1 for all t 6 1, to

determine ‖ε‖ψ2, it suffices to consider t = 1 which is where the exponential in Property (1)
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is smallest. Solving for ‖ε‖ψ2 in

P(|ε| > 1) = 1 = 2 exp

(
−

1

‖ε‖2ψ2

)
,

we obtain ‖ε‖ψ2 = 1/
√

log(2).
More generally, this argument holds for any bounded random variable X with ‖X‖∞ = L.

The sub-gaussian norm is entirely determined by t = L, and rearranging

P(|X| > L) = 1 = 2 exp

(
−

L2

‖X‖2ψ2

)
gives

‖X‖ψ2 =
L√

log(2)
.

A very important property of sub-gaussian random variables is that sums of independent mean-
zero sub-gaussian random variables are still sub-gaussian. This is characterized in the following
proposition.

Proposition 2.3. Suppose X1, . . . , XN are independent, mean-zero, sub-gaussian random
variables. Then

∑N
i=1 Xi is also sub-gaussian with∥∥∥∥∥

N∑
i=1

Xi

∥∥∥∥∥
2

ψ2

6 C
N∑
i=1

‖Xi‖2ψ2

for C an absolute constant.

Proof. Using Property (5) in the definition of sub-gaussian and independence,

E exp

(
λ

N∑
i=1

Xi

)
=

N∏
i=1

E exp (λXi)

6
N∏
i=1

exp
(
C‖Xi‖2ψ2λ

2
)

= exp

(
λ2C

N∑
i=1

‖Xi‖2ψ2

)
.

Again by Property (5), the sum is sub-gaussian with∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

ψ2

6 C
N∑
i=1

‖Xi‖2ψ2

as desired. �

The equivalent properties of sub-gaussian random variables along with the previous proposition
produce some nice inequalities of sums of random variables which we will make use of later.

Theorem 2.5 (Kintchine’s Inequality, [29], Exercise 2.6.5). For X1, . . . , XN independent sub-
gaussian random variables with zero mean, let a = (ai)

N
i=1 ∈ RN. Then for any p ∈ [2,∞),∥∥∥∥∥

N∑
i=1

Xiai

∥∥∥∥∥
Lp

6 CK
√
p‖a‖2
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where K = maxi∈[N] ‖Xi‖ψ2, and C is an absolute constant.

Proof. By the moment condition on the sum (which is sub-gaussian by the previous proposi-
tion), ∥∥∥∥∥

N∑
i=1

aiXi

∥∥∥∥∥
Lp

6 C
√
p

∥∥∥∥∥
N∑
i=1

aiXi

∥∥∥∥∥
ψ2

6 C
√
p

√√√√ N∑
i=1

a2i ‖Xi‖
2
ψ2

6 C
√
p max
i∈[N]

‖Xi‖ψ2‖a‖2,

as desired. �

We now consider sub-gaussian processes which will become important when bounding the ω-
RIP constant of the sampling matrix.

Definition 2.4. A stochastic process (Xt)t∈T on a metric space (T, d) is sub-gaussian if
there exists a uniform constant K > 0 such that the increments satisfy

‖Xs − Xt‖ψ2 6 Kd(s, t).

It turns out that we can bound the suprema of such processes by quantities involving covering
numbers of the index set T .

Definition 2.5. Let (X, d) be a metric space. Consider a subset K ⊂ X and let t > 0. A
subset N ⊆ K is called an t-net of K if every point in K is within a distance t of some point
of N, that is,

for all x ∈ K, there exists some x0 ∈ N such that d(x, x0) 6 t.

The smallest possible cardinality of a t-net of K is called the covering number of K and is
denoted N(K, d, t).

Theorem 2.6 (Dudley’s Inequality, [29], Thoerem 8.1.3). A sub-gaussian process (Xt)t∈T
satisfies

E sup
t∈T

|Xt − Xt0 | 6 CK
∫∞
0

√
logN(T, d, ε) dε,

where K is the constant with respect to which Xt is sub-gaussian. For measurability purposes,
we consider the lattice supremum of the stochastic process,

E sup
t∈T

|Xt − Xt0 | = sup
S⊆T
S finite

E sup
t∈S

|Xt − Xt0 |.

In order to prove Dudley’s inequality we need to make use of the following proposition on the
maximum of a collection of sub-gaussian random variables.

Proposition 2.4 ([29], Exercise 2.5.10). For every N > 2 and X1, X2, . . . , XN sub-gaussian,

E max
i∈[N]

|Xi| 6 CK
√

logN

where K = maxi∈[N] ‖Xi‖ψ2.
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Proof. We first consider the random variable

Z := max
i∈[N]

Zi := max
i∈[N]

|Xi|

K
√
1+ log i

,

where in particular, the Zi have sub-gaussian norm bounded by 1/
√
1+ log i. Then applying the

union bound,

P[|Z| > t] 6
N∑
i=1

P[|Zi| > t]

6 2
N∑
i=1

exp
(
−t2(1+ log i)

)
= 2 exp

(
−t2

) N∑
i=1

i−t
2

.

For t2 > 2, the sum is bounded by
∑∞
i=1 i

−2 = π2/6. For t2 6 2,

P[|Z| > t] 6 1 = e2 exp(−2) 6 2
e2

2
exp
(
−t2

)
.

Thus, for all t > 0, taking C ′ = max{π2/6, e2/2} = e2/2,

P[|Z| > t] 6 2C ′ exp
(
−t2

)
Running the argument through for Property (1) =⇒ Property (2) in the definition of a sub-
gaussian random variable, we find E|Z| 6 C. Since |Xi|/

√
1+ log i > |Xi|/

√
1+ logN, we obtain

E max
i∈[N]

|Xi| 6 CK
√
1+ logN 6

√
2CK

√
logN

since N > 2. �

Proof of Theorem 2.6. The idea of the proof is to replace the expectation of the supremum
over all of T into one over just ε-nets of T which can be bounded with a union bound. This
was actually already done in the context of expectations of supremeums of sub-gaussian random
variables in Proposition 2.4. So we will just want to handle the expectation of the supremum of
increments over ε-nets since we know Xt is a sub-gaussian process.

We start with a summed discrete version of the upper bound which we then realize as an integral
which may be easier to calculate in practice. Since we are working with the lattice supremum, if
we can prove a uniform upper bound over supremums over all finite subsets of T , the bound holds
for the lattice supremum as well. Thus, without loss of generality, we assume T is finite.

We will want to relate the expectation of the supremum over T to the expectation over just ε-
nets of T . To this end, we construct a sequence of nets of increasing fineness. Under the assumption
that T is finite, if we make our net fine enough then, it eventually must then contain every point
in T . And if we start our sequence of nets at a large enough scale, every point in T will be be able
to be contained in the ball, so our first net can contain the single point t0 chosen in the statement
of the theorem.

It turns out that in order to relate the resulting sum to an integral, we should choose the scale
of our nets to be dyadic, that is, define

εk = 2−k for some k ∈ Z,
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and let a corresponding net achieving the covering number at this scale to be Tk (that is, |Tk| =
N(T, d, εk)). As reasoned above, for some κ small enough, we may choose Tκ = {t0}, and for some
K large enough, we may choose TK = T .

Now, we will relate an arbitrary Xt to these nets, by defining φk(t) to be the closest point to
t in Tk. By definition of an εk-net, d(t, φk(t)) 6 εk. Now, we walk from t0 to t along these finer
and finer nets, giving the telescopic representation

Xt − Xt0 =

K∑
k=κ+1

Xφk(t) − Xφk−1(t),

since we know XφK(t) = Xt and Xφκ(t) = t0. Thus, we may rewrite the supremum (which is a
maximum over finite T) we wish to bound as

Emax
t∈T

|Xt − Xt0 | 6 Emax
t∈T

K∑
k=κ+1

∣∣Xφk(t) − Xφk−1(t)∣∣
6

K∑
k=κ+1

Emax
t∈T

∣∣Xφk(t) − Xφk−1(t)∣∣
6

K∑
k=κ+1

E max
t1∈Tk,t2∈Tk−1

|Xt1 − Xt2 |.

Now, since the increments are sub-gaussian, Proposition 2.4 guarantees that

E max
t1∈Tk,t2∈Tk−1

|Xt1 − Xt2 | 6 C max
t1∈Tk,t2∈Tk−1

‖Xt1 − Xt2‖ψ2
√

log(|Tk||Tk−1|)

6 CK max
t1∈Tk,t2∈Tk−1

d(t1, t2)
√

log |Tk|2

6 CK max
t1∈Tk,t2∈Tk−1

[d(t1, t) + d(t, t2)]
√

log |Tk|

6 CK[εk + εk−1]
√

log |Tk|

6 CKεk−1
√

log |Tk|.

Inserting into the previous sum,

E sup
t∈T

|Xt − Xt0 | 6 CK
K∑

k=κ+1

εk−1
√
log |Tk| = 2CK

K∑
k=κ+1

2−k
√
logN(T, d, 2−k).

Finally, we make use of our dyadic scale to say that

2−k = 2

∫2−k
2−(k+1)

dε.

And since for any ε ∈ (2−(k+1), 2−k), ε 6 2−k,

N(T, d, 2−k) 6 N(T, d, ε).

Thus, the sum can be bounded as

E sup
t∈T

|Xt − Xt0 | 6 CK
∑
k∈Z

∫2−k
2−(k+1)

√
logN(T, d, ε) dε = CK

∫∞
0

√
logN(T, d, ε) dε,

as desired. �
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We now discuss symmetrization, a technique which allows us to convert a sum of random vari-
ables into a sum weighted by independent Rademacher variables which we can consider separately.
For example, we can take the conditional expectation with respect to the original random vari-
ables, and view the symmetrized sum as a weighted Rademacher sum to which we can apply nice
theorems (e.g., Bernstein or Kintchine inequalities).

Lemma 2.2 (Symmetrization, [29], Lemma 6.4.2). Let X1, . . . , XN be independent random vec-
tors in a normed space, and ε1, . . . εN an independent Rademacher sequence also independent
of the Xi. Then

E

∥∥∥∥∥
N∑
i=1

(Xi − EXi)

∥∥∥∥∥ 6 2E
∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥.
Proof. Let X ′i be an independent copy of Xi and for any random element ξ in an expression

containing only jointly independent random elements, denote expectation conditional on all random
elements except ξ as Eξ. Then since EXi = EX ′i,

E

∥∥∥∥∥
N∑
i=1

(Xi − EXi)

∥∥∥∥∥ = E

∥∥∥∥∥
N∑
i=1

(Xi − EX ′iX
′
i)

∥∥∥∥∥
6 EEX ′

∥∥∥∥∥
N∑
i=1

(Xi − X
′
i)

∥∥∥∥∥
= E

∥∥∥∥∥
N∑
i=1

(Xi − X
′
i)

∥∥∥∥∥.
Since Xi and X ′i are i.i.d., for any B ∈ B(Rn) Borel measurable on Rn

P(X− X ′ ∈ B) =
∫
Rn

∫
Rn
1{x1−x2∈B}(x1, x2) dPX(x1) dPX ′(x2)

=

∫
Rn

∫
Rn
1{x1−x2∈B}(x1, x2) dPX ′(x1) dPX(x2) = P(X ′ − X ∈ B).

Thus X−X ′ is symmetric. Additionally, for any symmetric random vector ξ, we have that εξ and
ξ are equal in distribution as

P[εξ ∈ B] = P [((ε = −1) ∩ (−ξ ∈ B)) ∪ ((ε = 1) ∩ (ξ ∈ B))]
= P [ε = −1]P [−ξ ∈ B] + P [ε = 1]P [ξ ∈ B]
= P [ξ ∈ B] (P[ε = −1] + P[ε = 1])
= P [ξ ∈ B] .

Thus,

E

∥∥∥∥∥
N∑
i=1

(Xi − X
′
i)

∥∥∥∥∥ = E

∥∥∥∥∥
N∑
i=1

εi(Xi − X
′
i)

∥∥∥∥∥
6 E

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥+ E

∥∥∥∥∥
N∑
i=1

εiX
′
i

∥∥∥∥∥
= 2E

∥∥∥∥∥
N∑
i=1

εiXi

∥∥∥∥∥
since Xi and X ′i are also equal in distribution. �
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As an example of symmetrization, we prove a version ofMaurey’s lemma on bounding covering
numbers of the convex hull of a set of points. We will later use this lemma to bound the Dudley
integral which in turn bounds the supremum of a sub-gaussian process.

Lemma 2.3 (Maurey’s Lemma, [17], Lemma 4.2). Let X be a normed space, and consider
a finite set U ⊂ X of N points. Assume that for every L ∈ N and (u1, . . . , uL) ∈ UL,
Eε
∥∥∥∑Li=1 εiui∥∥∥ 6 A√L for a Rademacher sequence ε as above. Then for every t > 0

logN(conv(U), ‖·‖, t) 6 C(A/t)2 logN,

where C > 0 is an absolute constant.

Proof. Take x ∈ convU with x =
∑N
j=1 ujθj with

∑N
j=1 θj. We use this convex combination as

a probability distribution, and we define a random element X to take the value uj with probability
θj. Thus EX = x. Since we have a nice bound on the Rademacher sum of entries in UL, we wish
to use symmetrization on a sum of length L to be determined of centered random elements taking
values in U . Since X takes values in U, and we know its expectation, we consider

E

∥∥∥∥∥
L∑
i=1

(Xi − x)

∥∥∥∥∥ 6 2EEε
∥∥∥∥∥
L∑
i=1

εiXi

∥∥∥∥∥ 6 2A√L,
where we condition on Xi using that the assumed bound is uniform over UL. Since we wish to
bound the distance of x to some t-net, we normalize this equation to produce

E

∥∥∥∥∥x− 1

L

L∑
i=1

Xi

∥∥∥∥∥ =
1

L
E

∥∥∥∥∥
L∑
i=1

(Xi − x)

∥∥∥∥∥ 6 2A√
L
,

and denote the random point 1L
∑L
i=1 Xi = X0. If we choose L ∼ (2A/t)2, we then have that in

expectation ‖x− X0‖ is bounded by t, and therefore there must exist some realization of X0, x0
that also satisfies this bound. We also know that

x0 ∈

{
1

L

L∑
i=1

ui | ui ∈ U for all i ∈ [L]

}
.

Since x was arbitrary, this set is then a t-net for convU and its cardinality NL 6 NC(A/t)2 bounds
the covering number of convU. Taking logarithms gives the desired bound. �

We end with a very powerful theorem giving a Bernstein style one-sided concentration inequality
on the supremum of an empirical process, that is, the supremum of a stochastic process indexed
by a class of functions. We follow the lead of [22] and do not consider its proof as it is very lengthy
and outside the scope of these notes which attempt to give only an overview of basic techniques
used in proving results from high dimensional probability. Interested readers can see [15, Section
8.9] for the proof and many corollaries.

Theorem 2.7 (Bernstein’s Inequality for Suprema of Empirical Processes). Let F be a count-
able set of functions F : CM → R. Let X1, . . . XK be independent random vectors in CM such
that EF(Xk) = 0, and F(Xk) 6 L almost surely for all k ∈ [K] and for all F ∈ F for some
constant L > 0. For the supremum of an empirical process

Z = sup
F∈F

K∑
k=1

F(Xk),
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which satisfies the bound on the variance of the summed terms E[F(Xk)2] 6 σ2k for all F ∈ F

and k ∈ [K], we have for any t > 0,

P(Z > EZ+ t) 6 exp
(
−

t2/2

σ2 + 2LEZ+ tL/3

)
,

where σ2 =
∑K
k=1 σ

2
k is the variance of the sum.

As a corollary, we have the traditional Bernstein’s inequality (which we remark may be proved
my much simpler means, similar to a proof of Hoeffding’s inequality for example).

Corollary 2.1 (Bernstein’s Inequality, [29], Theorem 2.8.4). Let X1, . . . , XK be independent,
mean-zero random variables such that |Xk| 6 L for all k ∈ [K]. Then for every t > 0,

P

[∣∣∣∣∣
K∑
k=1

Xk

∣∣∣∣∣ > t
]
6 2 exp

(
−

t2/2

σ2 + tL/3

)
where σ2 =

∑K
k=1 EX2k is the variance of the sum.

Proof. In Theorem 2.7, take F = {I}, just the identity. Then Z =
∑K
k=1 Xk is also mean-zero,

giving

P

(
K∑
k=1

Xk > t

)
6 exp

(
−

t2/2

σ2 + tL/3

)
.

A second application with F = {−I} gives the result for the negative sum, and the union bound
proves the desired bound for the absolute value. �

2.6. Weighted Restricted Isometry Property for Sampling Matrix

With our tools from high dimensional probability in hand, we are ready to prove the initial
implication in the chain that when combined with with the previously proven theorems on the
ω-RIP, the ω-NSP, and their relation to sparse recovery, will prove Theorem 2.2. Thus, we now
prove that the sampling matrix for our gPC basis satisfies the ω-RIP with high probability.

Theorem 2.8 ([24], Theorem 5.2). Fix δ, γ ∈ (0, 1), and let (φν)ν∈Λ be a gPC basis on a
finite index set with |Λ| =M. Taking a weight sequence such that ων > ‖φν‖∞ and

(2.12) K & δ−2smax
{
log3(s) log(M), log(1/γ)

}
i.i.d. sampling points

{
Z(k)
}K
k=1

drawn from the orthogonalization measure π, with probability
exceeding 1 − γ, the normalized sampling matrix Ã ∈ CK,M with entries Ãk,ν = 1√

K
φν(Z

(k))

has ω-RIP constant δω,s 6 δ.

Proof. Recall that in Proposition 2.1, we may rewrite the ω-RIP constant of order s of the
normalized sampling matrix Ã as

δω,s = max
ω(S)6s

∥∥Ã∗SÃS − I∥∥.
Instead of restricting Ã to S, we move a step back to the original definition, taking

Ts,Mω =
{
z ∈ CM | ‖z‖2 6 1, ‖z‖ω,0 6 s

}
and therefore

(2.13) δω,s = sup
z∈Ts,Mω

|〈(Ã∗Ã− I)z, z〉|.
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Now notice that to bound the expectation of δω,s, we just need to bound the supremum of a
stochastic process indexed over T = Ts,Mω . However, in order to use Dudley’s inequality, we would
need this process to be sub-gaussian, and since we are discussing a general gPC basis, we have no
information on how the random matrix 1

mÃ
∗Ã deviates from its mean I. In order to make use

of Dudley’s inequality, we will instead symmetrize to introduce sub-gaussian Rademacher random
variables. However, in order to use symmetrization in the context of the Eδω,s, we need to represent
δω,s as the norm of the sum of centered random vectors.

To this end, we construct a semi-norm on RM,M as

‖B‖s = sup
z∈Ts,Mω

|〈Bz, z〉|.

Thus, we can rewrite (2.13) as
δω,s =

∥∥Ã∗Ã− I
∥∥
s
.

Decomposing A∗ as a sum of columns
∑K
k=1 Xke

∗
k (where Xk =

(
φν(Z(k))

)
ν∈Λ

), we have

A∗A =

(
K∑
i=1

Xie
∗
i

) K∑
j=1

Xje
∗
j

∗

=

K∑
i,j=1

Xie
∗
iejX

∗
j

=

K∑
k=1

XkX
∗
k,

where by the fact that φ is a gPC basis, EXkX∗k = I. Therefore we obtain Eδω,s as the expectation
of the norm of a sum of centered random matrices

Eδω,s =
1

K
E

∥∥∥∥∥
K∑
k=1

(XkX
∗
k − I)

∥∥∥∥∥ =
1

K
E

∥∥∥∥∥
K∑
k=1

(XkX
∗
k − EXkX∗k)

∥∥∥∥∥.
A simple application of Lemma 2.2 on symmetrization implies

Eδω,s 6
2

K
EXEε

∥∥∥∥∥
K∑
k=1

εkXkX
∗
k

∥∥∥∥∥
=
2

K
EXEε sup

z∈Ts,Mω

∣∣∣∣∣
K∑
k=1

〈εkXkX∗kz, z〉

∣∣∣∣∣
=
2

K
EXEε sup

z∈Ts,Mω

∣∣∣∣∣
K∑
k=1

εk|〈Xk, z〉|2
∣∣∣∣∣

=:
2

K
EXEε sup

z∈Ts,Mω
|Yz|(2.14)

where the εk are independent (with the XkX∗k as well), Rademacher random variables.
We now find ourselves in prime territory for Dudley’s inequality (conditional on X). As a

process, the Rademacher sum has increments

Yz − Yx =

K∑
k=1

(
|〈Xk, z〉|2 − |〈Xk, x〉|2

)
εk.
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By Proposition 2.3 and the fact that Rademacher random variables have sub-gaussian norm ‖ε‖ψ2 =
C,

‖Yz − Yx‖2ψ2 6 C
K∑
k=1

(
|〈Xk, z〉|2 − |〈Xk, x〉|2

)2
‖εk‖2ψ2

6 C
K∑
k=1

(
|〈Xk, z〉|2 − |〈Xk, x〉|2

)2
.

Defining the pseudo-metric

d(z, x) =

(
K∑
k=1

(
|〈Xk, z〉|2 − |〈Xk, x〉|2

)2)1/2
,

we have that Yz is sub-gaussian with respect to the metric space (Ts,Mω , d). Choosing 0 = t0 ∈ Ts,Mω
and applying Theorem 2.6, Dudley’s inequality,

(2.15) Eε sup
z∈Ts,Mω

|Yz| 6 C
∫∞
0

√
logN(Ts,Mω , d, u) du.

The majority of the remainder of the proof consists of bounding the integrand for covering numbers
at different scales.

The first step to bounding the covering numbers is to rewrite d(z, x) in terms of the more
friendly 2-norm to which we can apply volumetric arguments. Applying Hölder’s inequality,

d(z, x) =

(
K∑
k=1

(
|〈Xk, z〉|2 − |〈Xk, x〉|2

)2)1/2

=

(
K∑
k=1

(|〈Xk, z〉|+ |〈Xk, x〉|)2 (|〈Xk, z〉|− |〈Xk, x〉|)2
)1/2

6

(
K∑
k=1

(|〈Xk, z〉|+ |〈Xk, x〉|)2 |〈Xk, z− x〉|2
)1/2

6

(
K∑
k=1

(|〈Xk, z〉|+ |〈Xk, x〉|)2p
)1/2p( K∑

k=1

|〈Xk, z− x〉|2q
)1/2q

6 2 sup
z∈Ts,Mω

(
K∑
k=1

|〈Xk, z〉|2p
)1/2p( K∑

k=1

|〈Xk, z− x〉|2q
)1/2q

.

In the first term, we can use that |(Xk)ν| 6 ων, z ∈ Ts,Mω , and the weighted Cauchy-Schwarz
inequality to give

(2.16) |〈Xk, z〉| 6
∑
ν∈Λ

ων|zν| 6 ‖z‖2
√ ∑
ν∈supp(z)

ω2ν 6
√
s‖z‖2 6

√
s

Rather than applying this to the entire first term, we separate summand and apply giving

|〈Xk, z〉|2p = |〈Xk, z〉|2|〈Xk, z〉|2(p−1) 6 sp−1|〈Xk, z〉|2.
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This will later end up allowing a better logarithmic factor in required number of measurements
than standard arguments. Thus,

d(z, x) 6 2s(p−1)/2p sup
z∈Ts,Mω

(∑
k=1

|〈Xk, z〉|2
)1/2p( K∑

k=1

|〈Xk, z− x〉|2q
)1/2q

.

The last piece defines our new semi-norm

‖z‖X,q =

(
K∑
k=1

|〈Xk, z〉|2q
)1/2q

which we will use in the Dudley integral, since

d(z, x) 6 C(s, p, X)‖z− x‖X,q, with C(s, p, X) = 2s(p−1)/2p sup
z∈Ts,Mω

(
K∑
k=1

|〈Xk, z〉|2
)1/2p

.

For any metrics satisfying d(x, z) 6 cd ′(x, z), we know that

(2.17) u > d ′(x, z) >
1

c
d ′(x, z) =⇒ cu > d(x, z),

and thus, any u-net with respect to d ′ is a cu-net with respect to d. Thus the covering number
for d at the scale cu must be bounded by the covering number for d ′ at the scale u, that is

N(T, d, cu) 6 N(T, d ′, u).

In the Dudley integral, this bound and a change of variables gives∫∞
0

√
logN(T, d, u) du =

∫∞
0

√
logN

(
T, d,

cu

c

)
du

= c

∫∞
0

√
logN(T, d, cu) du

6 c
∫∞
0

√
logN(T, d ′, u) du.

Thus, for our scenario,

(2.18)
∫∞
0

√
logN(Ts,Mω , d, u) du 6 C(s, p, X)

∫∞
0

√
logN(Ts,Mω , ‖·‖X,q, u) du

We will eventually split the Dudley integral into two pieces, so that we integrate over smaller u
and larger u using separate bounds on the covering number. For smaller u, we proceed as follows.
By the same reasoning in (2.16), we know that for z ∈ Ts,Mω ,

(2.19) ‖z‖X,q 6 K
1/2q
√
s‖z‖2.

Thus, if we have a u-net with respect to K1/2q
√
s‖·‖2, this is also a u-net with respect to ‖·‖X,q,

allowing us to instead bound

N(Ts,Mω , K1/2q
√
s‖·‖2, u) > N(Ts,Mω , ‖·‖X,q, u).

Additionally, applying (2.17) (with equality instead of an inequality), we find

N(Ts,Mω , K1/2q
√
s‖·‖2, u) = N(Ts,Mω , ‖·‖2, K

−1/2qs−1/2u),

allowing us to consider standard covering numbers in the friendlier `2-norm. The standard way to
do this is by a volumetric argument.
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We will start by splitting Ts,Mω into the union of lower dimensional balls

Ts,Mω =
⋃
S⊆Λ
ω(S)6s

BS, for BS = {z ∈ CM | supp(x) ⊆ S, ‖x‖2 6 1}.

If we denote the Cm `2-ball of radius r centered at z ∈ Cm by Bm(x, r), note that we can identify
BS ≡ B|S|(0, 1). Then if we have a u-net for each BS, the union of these nets is a u-net for Ts,Mω ,
giving

N(Ts,Mω , ‖·‖2, K
−1/2qs−1/2u) 6

∑
S⊆Λ
ω(S)6s

N(BS, ‖·‖2, K
−1/2qs−1/2u).

Our final step is to estimate the covering number of BS at the scale u ′ = K−1/2qs−1/2u. In order
to do this, we consider a maximal u ′ packing of BS, that is the maximal set {z1, . . . , zP} ⊆ BS such
that B|S|(zi, u

′/2) ∩ B|S|(zj, u
′/2) = ∅ for all i 6= j ∈ [P]. This maximal packing must also be a u ′-

net, since if not, there is some z∗ further than u ′ away from every element of the maximal packing,
contradicting the fact that the maximal packing is maximal. Additionally, since every element in
the packing has norm bounded by one, B|S|(zi, u

′/2) ⊆ B|S|(0, 1 + u ′/2) for every element in the
packing. These balls being disjoint implies

P
∣∣∣B|S|(0, u ′/2)

∣∣∣ = P∑
i=1

∣∣∣B|S|(zi, u
′/2)

∣∣∣ = ∣∣∣∣∣
P⋃
i=1

B|S|(zi, u
′/2)

∣∣∣∣∣ 6 ∣∣∣B|S|(0, 1+ u ′/2)
∣∣∣.

Identifying C|S| balls with R2|S| and using that
∣∣B|S|(0, r)

∣∣ = r2|S|B|S|(0, 1), we then find

N(BS, ‖·‖2, u
′) 6

∣∣B|S|(0, 1+ u ′/2)
∣∣∣∣B|S|(0, u ′/2)

∣∣ =
(1+ u ′/2)2|S|

(u ′/2)2|S|
=

(
1+

2K1/2q
√
s

u

)2|S|
.

Piecing together, we then find

N(Ts,Mω , ‖·‖X,q, u) 6
∑
S⊆Λ
ω(S)6s

(
1+

2K1/2q
√
s

u

)2|S|
.

However, since ων > 1, we have ω(S) > |S|, and so we can instead sum over all unweighted up
to s-sparse index sets. We can enumerate the exactly r-sparse index sets by simply taking all M
indices and choosing r of them, giving

|{S ⊆ Λ | ω(S) 6 s}| 6
s∑
r=1

|{S ⊆ Λ | ω(S) = r}| 6
s∑
r=1

(
M

r

)
.

We can then approximate

(2.20)
(
M

r

)
=
M(M− 1) · · · (M− (r+ 1))

r!
6
Mr

rr
rr

r!
6

(
eM

r

)r
.

Taking derivatives, we see that this last quantity is increasing in r, and so

|{S ⊆ Λ | ω(S) 6 s}| 6 s

(
eM

s

)s
6 (eM)s .

Finally, we obtain

(2.21) N(Ts,Mω , ‖·‖X,q, u) 6 (eM)s
(
1+

2K1/2q
√
s

u

)2s
.
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Now, we need to derive a bound for large values of u. Here, we will use Lemma 2.3, Maurey’s
lemma. After we get a bound on the covering number on the convex hull of some points U, we
will want to link this to the covering number of Ts,Mω . We will choose U so that Ts,Mω is (almost)
a subset, and then the best way to link the covering numbers is to show that for any sets T ⊆ S,
we have

(2.22) N(T, ‖·‖, u) 6 N(S, ‖·‖, u/2).

From a previous discussion, we know that the covering number of T at scale u is bounded by the
packing number at the same scale. This packing will then be a packing of S, so bounds the packing
number of S at that scale from below. The last step is to show that this packing number bounds
the covering number at scale u/2. But if we have a u packing and a u/2 net, each packing point
must be contained in a “net ball”. In fact, based on the u separation of point in the packing, there
can be at most one packing point in each net ball. Thus, there must be more net points than
packing points, implying the same relationship for the covering and packing numbers, finishing the
argument for (2.22).

Now we need to come up with the proper set of points to use for Maurey’s lemma. We at least
need to be sure that we can satisfy the hypothesis of Maurey’s lemma, that for any L ∈ N+ and
collection of points (u1, . . . , uL) ∈ UL, Eε

∥∥∥∑Li=1 εiui∥∥∥ 6 A√L for a Rademacher sequence ε. To
this end, let us keep U general and see what this bound means in terms of our norm ‖·‖X,q.

We calculate

Eε

∥∥∥∥∥
L∑
i=1

εiui

∥∥∥∥∥
X,q

= Eε

 K∑
k=1

∣∣∣∣∣
〈
Xk,

L∑
i=1

εiui

〉∣∣∣∣∣
2q
1/2q

6

 K∑
k=1

Eε

∣∣∣∣∣
L∑
i=1

εi〈Xk, ui〉

∣∣∣∣∣
2q
1/2q

6 C
√
2q

(
K∑
k=1

∥∥(〈Xk, ui〉)Li=1∥∥2q2
)1/2q

,

by Kintchine’s inequality. If we are able to choose |〈Xk, ui〉| = D constant, we would obtain,

Eε

∥∥∥∥∥
L∑
i=1

εiui

∥∥∥∥∥
X,q

6 CD
√
2qK1/2q

√
L,

as desired. In order to do this, a simple choice is to consider what happens when ui is some
multiple of of a canonical basis vector, ui = cνeν. Then

|〈Xk, ui〉| = cν|(Xk)ν| = cν
∣∣∣φν(Z(k))

∣∣∣ 6 cνων.
Choosing cν = ω−1

ν then gives D = 1 uniformly for all pairs of i and k as desired.
Our first pass is to then choose

U ′ = {ω−1
ν eν | ν ∈ Λ}.

However, it is clear that Ts,Mω cannot be contained in convU ′. In particular, at the very least,
Ts,Mω contains negative and imaginary numbers. So let us revise our point set to be

U = {±ω−1
ν eν,±iω−1

ν eν | ν ∈ Λ},
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noting that |〈Xk, ui〉| 6 1 for points in this set as well. However, we again find that Ts,Mω is not
necessarily contained in conv(U). Indeed, for some ν with

√
s > ων > 1, we have ‖eν‖ω,0 = ω2ν 6

s, with ‖eν‖2 = 1 giving that eν ∈ Ts,Mω . However, ‖eν‖2 >
∥∥ω−1

ν eν
∥∥ which is the longest vector

in conv(U) which “points” in the ν direction, giving that eν /∈ conv(U).
Let us see then where our ability to represent z ∈ Ts,Mω as a convex combination of points in

U fails. We begin by writing z = (zν)ν∈Λ = (xν + iyν)ν∈Λ. Then we have

z =
∑
ν∈Λ

sgn(xν)|xν|eν + i sgn(yν)|yν|eν

=
∑
ν∈Λ

sgn(xν)ω−1
ν eν(ων|xν|) + i sgn(yν)ω−1

ν eν(ων|yν|).

Since
∑
ν∈Λωνxν+ωνyν is not required to sum up to one, this is not then a convex combination.

As a compromise, we can make this a convex combination by normalizing by this sum, which we
represent ‖z‖∗1. Then z/‖z‖∗1 ∈ conv(U). This gives us the idea to no longer consider Ts,Mω being
a subset of just conv(U), but as a rescaled version. In order to do this, we need a uniform bound
on ‖z‖∗1 over Ts,Mω . Our weighted version of Cauchy-Schwarz again does the trick, as

‖z‖∗1 =
∑
ν∈Λ

ων|xν|+ων|yν| 6
√
s(‖x‖2 + ‖y‖2) 6 2

√
s,

since ‖z‖2 6 1. Now, since 0 ∈ conv(U) (which is convex) and z/‖z‖∗1 ∈ conv(U), we must have
the shorter z/(2

√
s) ∈ conv(U). Thus, Ts,Mω ⊆ 2

√
s conv(U).

Combining (2.22) and the bound from Maurey’s lemma, we find

N(Ts,Mω , ‖·‖X,q, u) 6 N(2
√
s conv(U), ‖·‖X,q, u/2)

6 N(conv(U), ‖·‖X,q, u/(4
√
s))

6 exp
(
C(sqK1/q)/u2 log(4M)

)
,

and in terms of the Dudley integrand,

(2.23)
√

logN(Ts,Mω , ‖·‖X,q, u) 6 C
√
sqK1/q log(4M)/u.

We are now ready to estimate the Dudley integral. First, we note that since any z ∈ Ts,Mω has
‖z‖2 6 1, by the Cauchy-Schwarz argument giving (2.19), we know that ‖z‖X,q 6 K1/2q

√
s. Thus,

for any u-net of Ts,Mω with u > K1/2q
√
s, we will be able to choose just one point in the net, and

therefore the root-logarithm of the covering number will be zero. So it suffices to integrate up to
K1/2q

√
s. As previously mentioned, we have derived (2.21) for small values of u and (2.23) for
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large values of u. Thus, we split the integral at some α ∈ (0, K1/2q
√
s) to be determined, giving

∫K1/2q√s
0

√
logN(Ts,Mω , ‖·‖X,q, u) du =

∫α
0

√
logN(Ts,Mω , ‖·‖X,q, u) du

+

∫K1/2q√s
α

√
logN(Ts,Mω , ‖·‖X,q, u) du

6
∫α
0

√
s log (eM) + 2s log

(
1+ 2K1/2q

√
su−1

)
du

+ C

√
sqK1/q log(4M)

∫K1/2q√s
α

u−1 du

=

∫α
0

√
s log (eM) + 2s log

(
1+ 2K1/2q

√
su−1

)
du

+ C

√
sqK1/q log(4M) log

(
K1/2q

√
sα−1

)
.

In order to handle the remaining integral I, we can first use the fact that for positive a, b,√
a+ b 6

√
a+
√
b. Splitting the square root and integrating the first term gives

(2.24) I 6 α
√
s log(eM) +

√
2s

∫α
0

√
log
(
1+ 2K1/2q

√
su−1

)
du.

In order to handle the remaining integral, we let 2K1/2q
√
s = β, and use Cauchy-Schwarz to find

∫α
0

√
log(1+ βu−1) du 6

√
α

√∫α
0

log(1+ βu−1) du.

The substitution t = βu−1 gives∫α
0

log
(
1+ βu−1

)
du = β

∫∞
β/α

t−2 log(1+ t) dt,

and integrating by parts gives∫α
0

log
(
1+ βu−1

)
du = β

[
t−1 log(1+ t)

∣∣∣∣β/α∞ +

∫∞
β/α

1

t(t+ 1)
dt

]

6 β

[
α

β
log(1+ β/α) +

∫∞
β/α

t−2 dt

]
= α log(1+ β/α) + α

= α log
(
e
(
1+ 2K1/2q

√
sα−1

))
.

Taking the square root, multiplying by
√
α and plugging into (2.24), gives the final estimate

∫K1/2q√s
0

√
logN

(
Ts,Mω , ‖·‖X,q, u

)
du 6 α

√
s log(eM) + α

√
2s

√
log
(
e
(
1+ 2K1/2q

√
sα−1

))
+ C

√
sqK1/q log(4M) log

(
K1/2q

√
sα−1

)
.
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In order to remove any logarithmic dependence on the number of measurements, we can then
choose α = K1/2q, giving∫K1/2q√s

0

√
logN

(
Ts,Mω , ‖·‖X,q, u

)
du 6

√
sK1/q log(eM) +

√
2sK1/q log

(
e
(
1+ 2

√
s
))

+ C

√
sqK1/q log(4M) log2(s)

6 K1/2q
√
sq

(√
log(eM) +

√
log(9e2s)

+

√
C log(4M) log2(s)

)
.

We can combine these terms making the (extremely mild) assumption (which we probably
already implicitly used somewhere else) that s,M > 2, since then log(s), log(M) > log(2). Letting
n represent either M or s and for an absolute constant c, we will invoke the general strategy

log(cn) = log(c) + log(n) 6
(
log(c)
log(2)

+ 1

)
log(n) := c ′ log(n).

We may also additionally add an additional multiplicative factor of log(n) to any term by paying
an absolute factor of 1/ log(2). Thus, we find

(2.25)
∫∞
0

√
logN

(
Ts,Mω , ‖·‖X,q, u

)
du 6 C

√
K1/qsq log(M) log2(s).

Combining this last estimate (2.25), The fact that this was a bound (2.18) on the expectation on
supremum of the Rademacher stochastic process shown in (2.15), and the fact that this expectation
was a bound on the expectation of the ω-RIP constant brings us to

Eδω,s 6 C
1

K
s(p−1)/2p

√
K1/qsq log(M) log2(s)EX sup

z∈Ts,Mω

(
K∑
k=1

|〈Xk, z〉|2
)1/2p

= Cs1−1/2pK1/2q−1
√
q log(M) log2(s)E sup

z∈Ts,Mω

(
K∑
k=1

|〈Xk, z〉|2
)1/2p

.

If we remember where this last term originally came from, it was to represent Ã∗Ã as the sum

(2.26)
1

K
E

∥∥∥∥∥
K∑
k=1

(XkX
∗
k − I)

∥∥∥∥∥
s

= E
∥∥Ã∗Ã− I

∥∥
s
= Eδω,s

so that we could apply symmetrization. In the reverse direction,

K∑
k=1

|〈Xk, z〉|2 =
K∑
k=1

〈XkX∗kz, z〉

= K

K∑
k=1

1

K
〈XkX∗kz, z〉− K〈Iz, z〉+ K〈Iz, z〉

= K

[〈(
K∑
k=1

1

K
XkX

∗
k − I

)
z, z

〉
+ 〈Iz, z〉

]
= K

[〈(
Ã∗Ã− I

)
z, z
〉
+ 〈Iz, z〉

]
.
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Taking 1/2p powers, supremums, and expectations gives

E sup
z∈Ts,Mω

(
K∑
k=1

|〈Xk, z〉|2
)1/2p

6 K1/2pE
(∥∥Ã∗Ã− I

∥∥
s
+ ‖I‖s

)1/2p
= K1/2pE (δω,s + 1)

1/2p .

By Jensen’s inequality and the fact that p > 1 and the integrand is necessarily at least one,

E sup
z∈Ts,Mω

(
K∑
k=1

|〈Xk, z〉|2
)1/2p

6 K1/2p
√
Eδω,s + 1,

and plugging into our bound for Eδω,s above,

Eδω,s 6 Cs1−1/2pK(1/2)(1/q+1/p)−1
√
q log(M) log2(s)

√
Eδω,s + 1

= C

√
s2−1/pq

log(M) log2(s)
K

√
Eδω,s + 1.

We are ready now to apply a tricky choice of p = 1+ 1/ log(s) and q = 1+ log(s) 6 c log(s), which
gives

1−
1

p
= 1−

1

1+ 1/ log(s)
=

1/ log(s)
1+ 1/ log(s)

6
1

log(s)
,

and
s2−1/p 6 ss1/ log(s) = selog(s)(1/ log(s)) = es.

Thus,

Eδω,s 6 C

√
s log(M) log3(s)

K

√
Eδω,s + 1.

We now perform some algebra to solve for Eδω,s. Moving C under the square root, and assuming
K is large enough to make this square root term bounded by one, we must reorder an inequality of
the form

x 6 a
√
x+ 1, a 6 1.

Adding one to both sides, and letting y =
√
x+ 1, we have

x 6 a
√
x+ 1

=⇒ y2 − ay 6 1

=⇒
(
y−

a

2

)2
6 1+

(a
2

)2
=⇒ x 6 (1+ a)2 − 1

=⇒ x 6 a2 + 2a 6 3a,

since a 6 1. Then we finally obtain

Eδω,s 6 C

√
s log(M) log3(s)

K
,

so long as
K & s log(m) log3(s).

We have then shown a bound on the expectation of the ω-RIP constant, but we now have to
show that this bound holds with high probability. One approach is to consider a modified Dudley’s
inequality to show that instead of just bounding expectations of the supremum of a stochastic
process, we can bound Lp norms (notice in the proof that we did not make use of the strength of
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Property (2) in Proposition 2.2, only the bound on expectation). The resulting argument would
be more involved, but produce similar bounds with the exception of a factor of

√
p, which, by

Proposition 2.2, proves that the ω-RIP constant is sub-gaussian, and will therefore satisfy the
concentration inequality in Property (1) which can prove a “high probability” bound. This is the
method used to prove a weaker probability version of Theorem 2.1 in [22, Theorem 8.1] (and before
being too hasty, we remark that we have not verified the details to show that this method works the
same way for the weighted setup). However, as also shown in [22, Theorem 8.4], we can strengthen
this probability result by using Bernstein’s inequality for empirical processes, Theorem 2.7.

In order to apply this theorem, we need to represent the ω-RIP constant as the supremum of
an empirical process

δω,s = sup
f∈F

K∑
k=1

f(Yk)

with the bounds

f(Yk) 6 L, Ef(Yk) = 0, and E[f(Yk)2] 6 σ2k.

As we recall, e.g. from (2.26), we know

Kδω,s =

∥∥∥∥∥
K∑
k=1

(XkX
∗
k − I)

∥∥∥∥∥
s

= sup
z∈Ts,Mω

∣∣∣∣∣
〈(

K∑
k=1

(XkX
∗
k − I)

)
z, z

〉∣∣∣∣∣,
where E(XkX∗k − I) = 0. This is our starting point.

It will turn out that our class of functions should take Xk as input, but we will need to rewrite
the previous quantity linearly, so that we can pull out the sum. If we instead switch this expression
back to operator norm, and rewrite using the quadratic form induced by

∑K
k=1(XkX

∗
k− I), we will

be able to do so. Thus, we rewrite

sup
z∈Ts,Mω

∣∣∣∣∣
〈(

K∑
k=1

(XkX
∗
k − I)

)
z, z

〉∣∣∣∣∣ = sup
S⊆Λ
ω(S)6s

∥∥∥∥∥
K∑
k=1

(XSk(X
S
k)
∗ − IS)

∥∥∥∥∥
= sup

S⊆Λ
ω(S)6s

sup
z,w∈S|S|−1

Re

〈(
K∑
k=1

(XSk(X
S
k)
∗ − IS)

)
z,w

〉

= sup
(z,w)∈Qs,Mω

Re

〈(
K∑
k=1

(XkX
∗
k − I)

)
z,w

〉

= sup
(z,w)∈Qs,Mω

K∑
k=1

Re 〈(XkX∗k − I)z,w〉 ,

where

Qs,Mω =
⋃
S⊆Λ
ω(S)6s

{(z,w) ∈ SM−1 × SM−1 | supp(z), supp(w) ⊆ S}.

Since this bi-linear operator will be shown to be bounded and therefore continuous over Qs,Mω , it
suffices to consider a countable dense subset of Qs,Mω , and thus, we can assume Qs,Mω is countable.
This gives us the countable set of functions

fz,w(Y) = Re〈(YY∗ − I)z,w〉, (z,w) ∈ Qs,Mω ,
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which has

Kδω,s = sup
z,w∈Qs,Mω

K∑
k=1

fz,w(Xk).

Now, pushing expectations into the inner product, we immediately have Efz,w(Xk) = 0 for all
k ∈ [K]. It remains to check the boundedness and variance conditions before we use Bernstein’s
inequality. For the boundedness, we first note for supp(z), supp(w) ⊆ S,

|fz,w(Xk)| 6
∣∣〈(XSk(XSk)∗ − IS)z,w〉∣∣ 6 ∥∥XSk(XSk)∗ − IS∥∥.

Using the characterization of the operator norm for Hermitian matrices, we obtain

|fz,w(Xk)| 6 max
z∈S|S|−1

∣∣〈(XSk(XSk)∗ − I)z, z〉∣∣
6

∣∣∣∣ max
x∈S|S|−1

〈XSk(XSk)∗x, x〉− 1
∣∣∣∣.

If the maximum has absolute value smaller than one, then so does |fz,w(Xk)|. If not, we have∣∣∣∣ max
x∈S|S|−1

〈XSk(XSk)∗x, x〉− 1
∣∣∣∣ = max

x∈S|S|−1
〈XSk(XSk)∗x, x〉− 1 6 max

x∈S|S|−1
〈XSk(XSk)∗x, x〉 = max

x∈S|S|−1

∣∣〈XSk, x〉∣∣2
which is bounded by s by the weighted Cauchy-Schwarz property and the fact that ω(S) 6 s.
Thus, |fz,w(Xk)| 6 L = s for all k ∈ [K]. Finally we bound the variance as

E|fz,w(Xk)|2 = E|Re〈(XkX∗k − I)z,w〉|
2

= E [Re〈XkX∗kz,w〉]
2 − 2ERe〈XkX∗kz,w〉Re〈z,w〉+ (Re〈z,w〉)2

6 E|〈XkX∗kz,w〉|
2 − 2Re

[
E〈XkX∗kw, z〉〈z,w〉

]
+ |〈z,w〉|2

6 E
[
|〈Xk, z〉|2|〈Xk, w〉|2

]
− |〈z,w〉|2,

where we have used that EXkX∗k = I to combine the cross term with |〈z,w〉|2. Now, using the
Cauchy-Schwarz argument again on |〈Xk, z〉|2 gives

E
[
|〈Xk, z〉|2|〈Xk, w〉|2

]
6 sE|〈Xk, w〉|2 = sEw∗XkX∗kw = sw∗w = s.

Thus, E|fz,w(Xk)|2 6 σ2k = s.
With these these two bounds, we can now use Bernstein’s inequality for the supremum of the

considered empirical process Kδω,s. We first use our argument bounding the expectation of δω,s
to say that for any δ ∈ (0, 1) we may choose some K & sδ−2 log(M) log3(s) such that Eδω,s 6 δ/2.
We then consider

P[δω,s > δ] 6 P[δω,s > Eδω,s + δ/2]
6 P[Kδω,s > EKδω,s + Kδ/2]

6 exp
(
−

(Kδ/2)2/2

sK+ 2sKEδω,s + s(Kδ/2)/3

)
6 exp

(
−

(Kδ/2)2/2

sK+ sKδ+ s(Kδ/2)/3

)
6 exp

(
−
Kδ2

Cs

)
6 γ,

so long as K & sδ−2 log(1/γ). Thus, δω,s 6 δ with probability at least 1− γ so long as

m & sδ−2max
{
log(N) log3(s), log(1/γ)

}
,
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as desired. �

2.7. Tying Together and Handling Infinite Index Sets

With Theorem 2.8 (normalized sampling matrix hasω-RIP with high probability), Theorem 2.4
(ω-RIP implies ω-NSP), and Theorem 2.3 (ω-NSP provides bounds for weighted `1-minimization)
in hand, we can now prove our original approximation result which we recall below.

Theorem 2.2. For a finite index set |Λ| =M and weights ων > ‖φν‖∞, if s > 2‖ω‖2∞ and
we draw

K & s log3(s) log(M)

i.i.d. samples
{
Z(k)
}K
k=1

from the orthogonalization measure π dz, then with probability 1 −
M− log3(s), we can approximately recover u from the polluted samples y = Aû + e with error
satisfying ‖e‖2 6 η as the solution û] of

minimize
z∈CM

‖z‖ω,1 subject to ‖Az− y‖2 6 η,

in the sense that for u] =
∑
ν∈Λ û

]
νφν,∥∥u− u]

∥∥∞ 6∥∥u− u]
∥∥
ω,1
6 B1σs(u)ω,1 + B2η

√
s

K
,∥∥u− u]

∥∥
2
6
C1√
s
σs(u)ω,1 + C2

η√
K
.

Proof. First, take the threshold for probability of failure γ in Theorem 2.8 to be γ =

M− log3(3s), so that
K & s log3(s) log(M)

satisfies the required number of measurements for 1√
K
A to have δω,3s 6 1

3 with probability ex-

ceeding 1 − γ = 1 −M− log3(3s) > 1 −M− log3(s). By Theorem 2.4, this ω-RIP constant implies
the ω-NSP.

Starting with measurements y = Aû+e with ‖e‖2 6 η, we convert to the normalized sampling
matrix by considering ỹ = 1√

K
y and ẽ = 1√

K
e satisfying ‖ẽ‖2 6

η√
K
. Theorem 2.3 then implies

that for û] solving the weighted `1 minimization program

minimize
z∈CM

‖z‖ω,1 subject to
∥∥Ãz− ỹ∥∥ 6 η√

K
⇐⇒ ‖Az− y‖ 6 η,

the error in the recovered solution is bounded as∥∥û− û]
∥∥
ω,1
6 B1σs(û)ω,1 + B2η

√
s

K∥∥û− û]
∥∥
2
6
C1√
s
σs(û)ω,1 + C2

η√
K
.

Since for u] =
∑
ν∈Λ û

]
νφν,∥∥u− u]

∥∥∞ 6 ∑
ν∈Λ

|ûν − û]ν|‖φν‖∞ 6 ∑
ν∈Λ

|ûν − û]ν|ων =
∥∥û− û]

∥∥
ω,1

,

we obtain the desired L∞ bound (2.2). On the other hand, since {φν}ν∈Λ is a gPC basis and is
orthonormal with respect to π dz, Parseval’s identity gives∥∥u− u]

∥∥
L2π

=
∥∥û− û]

∥∥
2
,

and we find the desired L2 bound (2.3). �
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2.7.1. Non-Uniform Results for Infinite Index Sets. We continue by using Theorem 2.2 to give a
result for orthonormal systems over countably infinite index sets. We start by showing that with
probability comparable to that with which the ω-RIP constant holds for a finitely indexed system,
the truncation of u to a certain index set has small remainder.

Lemma 2.4. Let Λ be countably infinite such that Λ0 = {ν | ω2ν 6 s/2} is finite and denote
|Λ0| =M, ΛR = Λ \Λ0. For a fixed function u =

∑
ν∈Λ ûνφν, take

K & s log(M) log3(s)

i.i.d. samples {Z(k)}Kk=1 from π dz and form the ensemble of measurements yk = u
(
Z(k)

)
.

With probability exceeding 1−M− log3(s)

(2.27)

(
K∑
k=1

(
uΛR(Z

(k))
)2)1/2

6 2

√
K

s
‖uΛR‖ω,1.

Proof. We wish to bound the sum of random variables u2k := uΛR(Z
(k))2 with high prob-

ability. This suggests that we use a good quality concentration inequality, namely Bernstein’s
inequality for bounded random variables, Corollary 2.1. We first calculate the expectation of u2k,
so that we may center. By Parseval’s identity,

Eu2k =
∑
ν∈ΛR

û2ν.

Thus, Bernstein’s inequality will bound the probability that

K∑
k=1

u2k − ∑
ν∈ΛR

û2ν


exceeds some bound t > 0, so long as we have bounds on the variance and L∞-norm of each
summands. Indeed, we calculate

∥∥u2k∥∥∞ 6
 ∑
ν∈ΛR

|ûν|‖φν(Z)‖∞
2 6 ‖uΛR‖

2
ω,1,

and using the definition of Λ0, we have

(2.28)
∑
ν∈ΛR

û2ν 6
2

s

∑
ν∈ΛR

û2νω
2
ν 6

2

s

 ∑
ν∈ΛR

|uν|ων

2 6 2
s
‖uΛR‖

2
ω,1 6 ‖uΛR‖

2
ω,1.

Thus,
∥∥u2k −∑ν∈ΛR

û2ν
∥∥∞ 6 2‖uΛR‖

2
ω,1. Additionally, we bound the variance as

E
(
u2k − Eu2k

)2
6 Eu4k 6 ‖uΛR‖

2
ω,1Eu

2
k 6

2

s
‖uΛR‖

4
ω,1.

Bernstein’s inequality then gives

P

 K∑
k=1

u2k − ∑
ν∈ΛR

û2ν

 > t
 6 exp

(
−

t2/2

2K‖uΛR‖
4
ω,1/s+ 2t‖uΛR‖

2
ω,1/3

)
.
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Since our goal is to bound
∑K
k=1 u

2
k by ‖uΛR‖

2
ω,1, we choose t = K

s
‖uΛR‖ω,1 (where the K

s

balances out the terms in the exponential). Thus,

P

 K∑
k=1

u2k − ∑
ν∈ΛR

û2ν

 > K
s
‖uΛR‖

2
ω,1

 6 exp
(
−C

K

s

)
,

and taking K & s log(M) log3(s), we have

P

 K∑
k=1

u2k − ∑
ν∈ΛR

û2ν

 > K
s
‖uΛR‖

2
ω,1

 6M− log3(s).

So with probability exceeding 1−M− log3(s),

K∑
k=1

u2k 6 K
∑
ν∈ΛR

û2ν +
K

s
‖uΛR‖

2
ω,1 6 3

K

s
‖uΛR‖

2
ω,1.

Taking square roots gives the desired bound with the specified probability. �

By approximating this truncation using Theorem 2.2, we obtain the following result.

Corollary 2.2. For Λ countably infinite and Λ0 = {ν | ω2ν 6 s/2} finite with |Λ0| = M,
and for a fixed function

∑
ν∈Λ ûνφν, take

K & s log(M) log3(s)

i.i.d. samples {Z(k)}k=1 from π dz, and form the measurements yk = u(Z(k)). With probability
exceeding 1 − 2M− log3(s) the following holds. Letting û] be the solution of the weighted `1
minimization program

minimize
z∈CM

‖z‖ω,1 subject to ‖Az− y‖2 6 2
√
K

s
‖u− uΛ0‖ω,1.

Taking u] =
∑
ν∈Λ û

]
νφν, ∥∥u− u]

∥∥∞ 6 B1σs/2(u)ω,1∥∥u− u]
∥∥
2
6
C1√
s
σs/2(u)ω,1.

Proof. We use Theorem 2.2 on the truncated function uΛ0 , where the error in each sample of
this truncation is u(Z(k)) − uΛ0(Z

(k)) = uΛR(Z
(k)). By Lemma 2.4, we know that with the spec-

ified number of measurements, the `2 norm of this error does not exceed η = 2
√
K
s
‖u− uΛ0‖ω,1

with probability bounded by M− log3(s). Additionally, Theorem 2.2 says that a draw of the spec-
ified number of measurements measurements gives that solving the stated minimization program
provides the bounds ∥∥uΛ0 − u]∥∥∞ 6 B [σs(uΛ0)ω,1 + ‖u− uΛ0‖ω,1

]
∥∥uΛ0 − u]∥∥L2 6 C√

s

[
σs(uΛ0)ω,1 + ‖u− uΛ0‖ω,1

]
,

with probability of failure bounded by M− log3(s). Thus, the union bound tells us that the proba-
bility of either of these conditions failing is less than 2M− log3(s) giving the corollary’s probability
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estimate. In the proof of Lemma 2.4, we also found

‖u− uΛ0‖∞ 6 ‖u− uΛ0‖ω,1

‖u− uΛ0‖2 6
2√
s
‖u− uΛ0‖ω,1,

and so by the triangle inequality,∥∥u− u]
∥∥∞ 6 B [σs(uΛ0)ω,1 + ‖u− uΛ0‖ω,1

]
∥∥u− u]

∥∥
L2
6
C√
s

[
σs(uΛ0)ω,1 + ‖u− uΛ0‖ω,1

]
.

The last step is to relate σs(uΛ0)ω,1 + ‖u− uΛ0‖ω,1 to σs/2(u)ω,1. But since ω2ν > s/2 for all
ν ∈ ΛR, the support of the weighted best s/2-term estimate of u cannot intersect ΛR. Thus, the
weighted best s/2-term estimate to uΛ0 is the same as that of u. Since this is a stricter sparsity
condition, σs(uΛ0)ω,1 6 σs/2(uΛ0)ω,1. Since this best s/2-term estimate has support disjoint
with uΛR , its weighted `1 difference with u is the same as its difference with uΛ0 summed with
the remainder uΛR . So σs(uΛ0)ω,1 + ‖u− uΛ0‖ω,1 6 σs/2(u)ω,1, giving the desired bound. �

2.7.2. Uniform Results for Infinite Index Sets. By using Lemma 2.4 to bound the error in using a
truncated version of u for sparse recovery in Corollary 2.2, we have derived a nonuniform result.
However, we can take another approach, which instead of formulating

∥∥∥(uΛR(Z
(k))

)K
k=1

∥∥∥
`2

in terms

of
√
K/s‖uΛR‖ω,1, we use

(2.29)
∥∥∥∥(uΛR(Z

(k))
)K
k=1

∥∥∥∥
`2

6
√
K‖uΛR‖∞ 6 √K ∑

ν∈ΛR

|ûν|ων

We then need some other way to balance this with the σs(uΛ0)ω,1 term appearing in the error
bounds of Theorem 2.2 after we use it on the truncation. The goal is to take a common upper
bound using the Stechkin estimate. From Theorem 1.5, we have

σs(uΛ0)ω,1 6 (s− ‖ω‖2∞)1−1/p‖uΛ0‖ω,p
for any p < 1, so long as s > ‖ω‖2∞. Additionally, when s/2 > ‖ω‖2∞, we can remove the
dependence of ω in this bound by noting that s/2 6 s− ‖ω‖2∞, and so

(2.30) σs(uΛ0)ω,1 6 2
1/p−1s1−1/p‖uΛ0‖ω,p.

In order to balance this bound on σs(uΛ0)ω,1 by ‖uΛ0‖ω,p with the `2 bound on the error
(2.29) , we will introduce a set of auxiliary weights which allow us more control over ‖uΛR‖ω,1
and still allow us to make use of the property that s/2 > ‖ω‖2∞ (without which we do not have the
previously shown recovery bounds). We summarize this auxiliary weighting process in the following
lemma, which we use to prove the final theorem on the topic of pure function approximation using
compressive sensing.

Lemma 2.5. Fix p ∈ (0, 1). Let ξ be a set of weights and Λ be countably infinite such that
for α = 2/p− 1, Λ(s,p)

0 = {ν ∈ Λ | ωνξ
−α
ν > s1/2−1/p} and ΛR = Λ \Λ0. Then∥∥∥∥(uΛR(Z

(k))
)K
k=1

∥∥∥∥
`2

6

√
K

s
s1−1/p‖uΛR‖ξ,p.



68 ‖ Compressive Sensing for Function Approximation Comprehensive Exam Notes

Proof. For the given weights, estimate (2.29) gives∥∥∥∥(uΛR(Z
(k))

)K
k=1

∥∥∥∥
`2

6
√
K sup
η∈ΛR

(ωηξ
−α
η )

∑
ν∈ΛR

|ûν|ξ
α
ν =
√
K sup
η∈ΛR

(ωηξ
−α
η )‖uΛR‖ξα,1.

We now provide an estimate which allows us to switch from ‖uΛR‖ξα,1 to ‖uΛR‖ξ,p. Indeed,

‖uΛR‖ξα,1 =
∑
ν∈ΛR

|ûν|ξ
α
ν

6 sup
η∈ΛR

|ûη|
1−pξ

α(1−p)
η

∑
ν∈ΛR

|ûν|
pξαpν .

By virtue of the choice that αp = 2− p, we find

(2.31)

‖uΛR‖ξα,1 6 sup
η∈ΛR

|ûη|
1−pξ

α(1−p)
η ‖uΛR‖

p
ξ,p

6

∑
η∈ΛR

|ûη|
pξαpη

(1−p)/p

‖uΛR‖
p
ξ,p

= ‖uΛR‖
1−p
ξ,p ‖uΛR‖

p
ξ,p = ‖uΛR‖ξ,p.

Combining with the previous bound gives∥∥∥∥(uΛR(Z
(k))

)K
k=1

∥∥∥∥
`2

6
√
K sup
η∈ΛR

(ωηξ
−α
η )‖uΛR‖ξ,p.

By our choice of Λ0, for all ν ∈ ΛR, ωηξ−αη 6 s1/2−1/p, giving the desired bound. �

Corollary 2.3. Fix p ∈ (0, 1). Let ξ be a set of weights satisfying ξν >
√
2ω

2/(2−p)
ν , and

for α = 2/p − 1, Λ countably infinite and Λ(s,p)
0 =

{
ν ∈ Λ | ωνξ

−α
ν > s1/2−1/p

}
finite with

|Λ
(s,p)
0 | =M(s,p), take

K & s log
(
M(s,p)

)
log3(s)

i.i.d. samples
{
Z(k)
}K
k=1

from π dz. With probability exceeding 1 − (M(s,p))− log3(s), for any
u ∈ `ξ,p, we have the following weighted `1 recovery estimates. If we take the samples
yk = u(Z(k)), and let û] be the solution of the weighted `1 minimization program

minimize
z∈CM(s,p)

‖z‖ω,1 subject to ‖Az− y‖2 6
√
K

s
s1−1/p‖uΛR‖ξ,p

then for u] =
∑
ν∈Λ û

]
νφν, ∥∥u− u]

∥∥∞ 6 B(p)s1−1/p‖u‖ξ,p∥∥u− u]
∥∥
L2
6 C(p)s1/2−1/p‖u‖ξ,p.

Proof. Since ξν >
√
2ω

2/(2−p)
ν > ων, on Λ

(s,p)
0 ,

s1/2−1/p 6 ωνξ
−α
ν

6 ων
(√
2ω

2/(2−p)
ν

)1−2/p
= 21/2−1/pω

1−2/p
ν

=
(
2ω2ν

)1/2−1/p
.
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Since 1/2− 1/p < 0, we therefore have that s > 2ω2ν for all ν ∈ Λ(s,p)
0 . Applying Theorem 2.2 on

u
Λ

(s,p)
0

with measurement error vector

u(Z(k)) − u
Λ

(s,p)
0

(Z(k)) = uΛR(Z
(k)),

which, by Lemma 2.5 has `2 norm bounded by s1−1/p
√
K/s‖uΛR‖ξ,p gives the following error

bounds for the specified weighted `1 minimization program:∥∥∥u
Λ

(s,p)
0

− u]
∥∥∥∞ 6 B [σs(uΛ(s,p)

0

)ω,1 + s
1−1/p‖uΛR‖ξ,p

]
∥∥∥u
Λ

(s,p)
0

− u]
∥∥∥
L2
6
C√
s

[
σs(uΛ(s,p)

0

)ω,1 + s
1−1/p‖uΛR‖ξ,p

]
.

But from (2.30), we have∥∥∥u
Λ

(s,p)
0

− u]
∥∥∥∞ 6 B(p)s1−1/p

[∥∥∥u
Λ

(s,p)
0

∥∥∥
ω,p

+ ‖uΛR‖ξ,p

]
∥∥∥u
Λ

(s,p)
0

− u]
∥∥∥
L2
6 C(p)s1/2−1/p

[∥∥∥u
Λ

(s,p)
0

∥∥∥
ω,p

+ ‖uΛR‖ξ,p

]
,

Additionally, since
√
2ω

2/(2−p)
ν 6 ξn,

ων 6 ξ
(2−p)/2
ν 6 ξν.

Then ∥∥∥u
Λ

(s,p)
0

∥∥∥
ω,p

+ ‖uΛR‖ξ,p 6
∥∥∥u
Λ

(s,p)
0

∥∥∥
ξ,p

+ ‖uΛR‖ξ,p 6 2‖u‖ξ,p.

The proof of Lemma 2.5 and (2.29) additionally give∥∥∥u− u
Λ

(s,p)
0

∥∥∥
L2
6
∥∥∥u− u

Λ
(s,p)
0

∥∥∥∞ = ‖uΛR‖∞ 6 s1/2−1/p‖uΛR‖ξ,p 6 s
1−1/p‖u‖ξ,p,

to combine with the above recovery bounds to give the total error by the triangle inequality. �





CHAPTER 3

Compressive Sensing for Solving High-Dimensional PDE

In this chapter, we will use the results from the Chapter 2 to approximate solutions to high-
dimensional parametric PDE discussed in Chapter 1. We will proceed through the method found
in [23], which makes heavy use of the compressive sensing techniques in [24]. But first, we recall
the problem and discuss general assumptions for well-posedness.

3.1. Problem and Assumptions

We consider the special case of finding pointwise weak solutions of the standard parameterized
UQ problem 1.4 where the operator L has affine dependence on a (now possibly infinite) parameter
sequence Z as in (1.52), that is, for separable reflexive Banach spaces X and Y, Z ∈ Γ = [−1, 1]N+ ,
and

L(Z) = L0 +

∞∑
n=1

ZnLn : Γ → L(X,Y∗),

we wish to find some u : Γ → X such that for f : Γ → Y∗

(3.1) L(u,w;Z) := Y∗〈L(Z)u(Z), w〉Y = Y∗〈f(Z), w〉Y for all w ∈ Y and all Z ∈ Γ.

This solution can also be expressed as saying that L(Z)u = f(Z) as elements of Y∗ for all Z ∈ Γ .
Since we will be making use of the parametric nature of the equation, we also define the bilinear
form

Ln(u,w) := Y∗〈Lnu,w〉Y for all n ∈ N0.

Recall that by the Karhunen-Loève expansion, the imposition that L depends on Z affinely is a
mild assumption.

3.1.1. Well-Posedness of True Solution. As discussed in Section 1.3.2, when X = Y, the Lax-
Milgram theorem, Theorem 1.2, gives conditions for well-posedness of the solution. However, when
X 6= Y, we require more stringent versions of continuity and coercivity in the form of inf-sup
conditions. These conditions are summarized in the assumption below on the mean operator, L0,
as well as conditions to keep the fluctuation operators, Ln for n ∈ N+, well-behaved.

Assumption 3.1.

(1) L0 satisfies the inf-sup condition that there exists some µ0 > 0 with

(3.2) inf
v∈X\{0}

sup
w∈Y\{0}

L0(v,w)

‖v‖X‖w‖Y
> µ0, inf

Y\{0}
sup

v∈X\{0}

L0(v,w)

‖v‖X‖w‖Y
> µ0.

In particular, this implies that L0 is boundedly invertible (see remark below).
(2) There exists a constant 0 < κ < 1 such that∑

n∈N+

β0,n 6 κ, where β0,n :=
∥∥L−1
0 Ln

∥∥
L(X,X)

, for n ∈ N+.

71



72 ‖ Compressive Sensing for Solving High-Dimensional PDE Comprehensive Exam Notes

Remark 3.1. Notice that bounded invertibility is the exact consequence of the Lax-Milgram
theorem. Thus, the mean operator satisfying (3.2) resulting in bounded invertibility is a gen-
eralized version of the Lax-Milgram theorem. This is summarized below in Theorem 3.1.
Just as for the Lax-Milgram theorem, we consider the proof outside the scope of these notes.
Interested readers can see [21, Section 2.2] and references therein for a discussion of general-
izations of coercivity and the Lax-Milgram theorem to non-symmetric bilinear forms.

Theorem 3.1 ([25], Proposition 1, Banach-Nečas-Babuska). Any bounded, linear operator
L0 ∈ L(X,Y∗) is boundedly invertible if and only if (3.2) is satisfied. In particular, (3.2)
implies that for every f ∈ Y∗, the dual equality

L0(u, v) = Y∗〈f, v〉Y for all v ∈ Y

is realized with a unique u ∈ X satisfying the stability estimate

‖u‖X =
∥∥L−1
0 f
∥∥
X
6
1

µ0
‖f‖Y∗ .

With Assumption 3.1 in hand, we can prove an extension to the Banach-Nečas-Babuska theorem
to show bounded invertibility of the entire affine operator, not just the mean operator.

Proposition 3.1 ([25], Theorem 1). Under Assumption 3.1, for every Z ∈ Γ , L(Z) is
boundedly invertible which is to say that that for every f ∈ Y∗ and Z ∈ Γ , a unique u : Γ → X

exists satisfying (3.1) and the parametrically uniform stability estimate

sup
Z∈Γ
‖u(Z)‖X 6

1

µ
‖f‖Y∗ ,

where µ = (1− κ)µ0.

Proof. Since Assumption 3.1 implies that L0 is boundedly invertible, we write

L(Z) = L0

I+ ∑
n∈N+

L−1
0 ZnLn

 .
Thus, it suffices to show that the second term is boundedly invertible. We prove this with a
Neumann series argument. First, note that∥∥∥∥∥∥−

∑
n∈N+

L−1
0 ZnLn

∥∥∥∥∥∥ 6
∑
n∈N+

|Zn|
∥∥L−1
0 Ln

∥∥ 6 ∑
n∈N+

β0,n 6 κ < 1,

where we have used that Zn ∈ Γn = [−1, 1]. Thus, we may write the second term as I − A where
for some fixed Z ∈ Γ , A = −

∑
n∈N+

ZnL
−1
0 Ln which has norm bounded by κ < 1.

We now show that I − A is invertible and bound the norm of the inverse. For injectivity, we
consider v ∈ X \ {0}, and calculate

‖(I−A)v‖X > ‖v‖X − ‖Av‖X > (1− κ)‖v‖X > 0.

Thus, the nullspace N(I−A) = {0}, and I−A is injective. For surjectivity, for any u ∈ X, we take

v =

∞∑
k=0

Aku,

which exists by a Cauchy sequence argument on the partial sums and the fact that

(3.3)

∥∥∥∥∥
∞∑
k=0

Ak

∥∥∥∥∥ 6
∞∑
k=0

∥∥Ak∥∥ 6 ∞∑
k=0

‖A‖k 6
∞∑
k=0

κk =
1

1− κ
.
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Now applying I−A, we have

(I−A)v =

∞∑
k=0

Aku−

∞∑
k=1

Aku = A0u = u.

Thus, I − A is surjective and invertible with (I − A)−1 =
∑∞
k=0A

k which, by (3.3), has norm
bounded by (1− κ)−1.

Combining the bounded invertibility of L0 and I − A, we have L(Z) = L0(I − A) is also
boundedly invertible, with∥∥L(Z)−1f∥∥

X
6

1

1− κ

∥∥L−1
0 f
∥∥
X
6

1

(1− κ)µ0
‖f‖X∗ ,

by (3.3) and the stability estimate for L−1
0 given in Theorem 3.1 when L0 satisfies Assumption 3.1.

�

Example 3.1. We consider the case of the parametric diffusion equation with diffusion
coefficient expanded using the Karhunen-Loève theorem, that is, when

L(Z)u = −D · (A(x, Z)Du) = −D · (Â0(x)Du) +
∑
n∈N+

Zn(−D · (Ân(x)Du)).

Since X = Y = H10(Ω), Assumption 3.1.1 reduces to coercivity so that the mean operator is
boundedly invertible by the Lax-Milgram theorem, Theorem 1.2. So we assume the mean
operator is coercive with parameter α, which is equivalent to Â0(x) being uniformly elliptic
with parameter α. In order to rephrase Assumption 3.1.2, we calculate ‖Ln‖. For any
u ∈ H10(Ω) with ‖u‖H10(Ω) = ‖Du‖L2(Ω) = 1, we find

‖Lnu‖H−1(Ω) = sup
‖Dv‖

L2(Ω)
=1

∫
Ω

(Dv)T Ân(x)Du

6 sup
‖Dv‖

L2(Ω)
=1

∫
Ω

‖Dv‖2
∥∥∥Ân(x)Du∥∥∥

2

6 sup
‖Dv‖

L2(Ω)
=1

‖Dv‖L2(Ω)

√∫
Ω

∥∥∥Ân(x)∥∥∥2‖Du‖22
6 sup
x∈Ω

∥∥∥Ân(x)∥∥∥‖u‖H10(Ω)

= sup
x∈Ω

∥∥∥Ân(x)∥∥∥.
Thus, we require

∑
n∈N+

∥∥L−1
0 Ln

∥∥ 6 ∑
n∈N+

supx∈Ω
∥∥∥Ân(x)∥∥∥
α

6 κ.

Thus, the parametric stationary diffusion equation satisfies Assumption 3.1 when the Â0(x)
is uniformly elliptic with constant α, and∑

n∈N+

sup
x∈Ω

∥∥∥Ân(x)∥∥∥ 6 ακ,
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for some κ < 1. By Proposition 3.1, we then know that L(Z) is boundedly invertible uniformly
over Γ with the stability estimate

‖u‖H10(Ω) =
∥∥L−1f

∥∥
H10(Ω)

6
1

(1− κ)α
‖f‖H−1(D).

Notice as well that these two conditions are stronger than having the original affine
operator L be uniformly elliptic with ellipticity parameter α(1 − κ) which provides the same
well-posedness result by the Lax-Milgram theorem. Indeed, we check that for any v ∈ S`−1,

vT

Â0(x) + ∑
n∈N+

Ân(x)

 v > vT Â0(x)v− ‖v‖22 sup
x∈Ω

∥∥∥∥∥∥
∑
n∈N+

Ân(x)

∥∥∥∥∥∥
> α− ακ = α(1− κ).

The benefit of Assumption 3.1 and the Banach-Nečas-Babuska theorem is that it allows for
analysis of a wider class of problems including saddle point problems where X 6= Y.

3.1.2. Well Posedness of Discrete Solution. As in the sampling methods considered in Chapter 1,
we will sample values of u(Z) at different parameter instances, that is, we create an ensemble of
solutions to the deterministic problem fixed at certain parameter values. However, we will not be
using exact solutions, but rather approximations. The method considered in [23] does this by way
of Petrov-Galerkin discretization. Since we will only need the discrete solution to approximate the
true solution up to some desired tolerance and any sampling methods can make use of the same
solvers with the same rates of convergence, just as in Section 1.8.3.2, we defer to the finite element
method theory and simply make the following assumptions

Assumption 3.2. For every f ∈ Y∗ and Z ∈ Γ , we consider the discrete, truncated version
of (3.1). That is, for some finite dimensional subspaces Xh ⊂ X, Yh ⊂ Y (considered as finite
element spaces with mesh parameter h), and dimension truncated affine operator

L(N)(Z) = L0 +

N∑
n=1

ZnLn, L(N)(u, v) = Y∗〈L(N)u, v〉Y,

we assume that the Petrov-Galerkin method produces a solution uN,h ∈ Xh satisfying

L(N)(uN,h, v) = Y∗〈f, v〉Y for all v ∈ Yh.

Additionally, we assume that (for uh ∈ Xh solving the untruncated problem) ‖u− uh‖X =

O(ht) with t and the implicit constant depending on the problem data and affine operator.
Finally, we account for the dimension truncation when we apply a functional G ∈ X∗, to the
discrete solution, and assume that |G(uh) − G(uN,h)| = O(N−p0) where p0 > 0 depends on
the summability of the vector of operator norms β0, and the implicit constant depends on
the affine data, the norm of the functional, p0 the affine operator. Altogether, we have

G(uN,h)→ G(u) as N→∞, h→ 0.

Remark 3.2. Note that when we make the finite dimensional noise assumption as in
Section 1.8.3.2, we need not account for any error in the dimension truncation.
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3.1.3. Chebyshev Expansion Over Infinite Dimensional Parameter Domain. Since the recovery results
from Chapter 2 are dimension independent, we will in general not make the finite dimensional
noise assumption, which means that we must handle an infinite dimensional parameter domain
Γ = [−1, 1]N+ and infinite dimensional gPC index sets. In order for a gPC basis to be well-defined
we consider only indices with finite support, defining Λ = {ν ∈ NN+

0 | ‖ν‖0 <∞}.
In [23], the only gPC basis considered is the one of Chebyshev polynomials, as they will be

shown to have L∞ norms which play nicely with the necessary structure of the weights with respect
to which the gPC coefficients of the solution to the affine parametric equation will be weighted
summable (a requirement to use the compressive sensing results from Chapter 2). Additionally,
prior work has shown unweighted summability of Chebyshev coefficients of solutions to affine
parametric operator equations such as these, linking the ideas of analyticity and summability of
the gPC expansion as hinted at previously. We make explicit the definition of the Chebyshev
polynomials used as well as their orthogonalization measure.

Definition 3.1. The one-dimensional order j Chebyshev polynomial is defined as

φj(Z) :=
√
2 cos(j arccos(Z)),

for all j ∈ N+ with φ0(Z) ≡ 1, and the one-dimensional Chebyshev probability measure on
[−1, 1] is

πn(zn) dzn =
1

π
√
1− z2n

dzn.

For any ν ∈ Λ, we define the tensorized Chebyshev polynomial

(3.4) φν =
∏
n∈N+

φνn(Zn)

and the tensorized Chebyshev measure

π(z) dz =
⊗
n∈N+

πn(zn) dzn =
⊗
n∈N+

1

π
√
1− z2n

dzn.

Remark 3.3. The tensorized Chebyshev polynomials are well-defined since the product in
(3.4) has only finitely many factors by virtue of the fact that ‖ν‖0 < ∞. A simple change
of variables zn = cos(θ) shows that one-dimensional Chebyshev polynomials are orthonor-
mal with respect to Chebyshev measure, and as a consequence, the tensorized Chebyshev
polynomials are orthonormal with respect to the tensorized Chebyshev measure since the
one-dimensional measure is a probability measure. Finally, note also that

(3.5) ‖φν‖∞ = 2‖ν‖0/2,

where equality is attained at the point Z = 1 ∈ [−1, 1]N+ since a univariate Chebyshev polyno-
mial of any order takes on its maximum value of

√
2 at Zn = 1.

Assumption 3.3. For the rest of this chapter, we assume that the solution to the para-
metric operator equation (3.1) u : Z→ X ∈ L2π(Γ) has a gPC expansion

u(Z) =
∑
ν∈Λ

ûνφν(Z)

in Chebyshev polynomials {φν}ν∈Λ for coefficients ûν ∈ X for all ν ∈ Λ.
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The remainder of this chapter will focus on showing that the sequence (‖ûν‖X)ν∈Λ is in some
weighted `p space, allowing us to recover u (or rather, functionals of u) with the techniques in
Chapter 2. Additionally, after determining the necessary weights, we show bounds on the size M
of the truncated finite index set (and therefore a bound on the necessary number of deterministic
PDE solves) Λ0 = {ν ∈ Λ | ω2ν 6 s/2}.

3.2. Weighted Summability of the Chebyshev Coefficients

Our goal in this section is to show that u ∈ Sω,p for some weight sequenceω and 0 < p < 1. We
will begin by first showing exponential decay of the Chebyshev coefficients of the solution in terms
of its domain of analyticity. The argument follows closely the sketch of the proof of Lemma 1.1,
and we will in fact prove the sketchy bound on the coefficients of the Fourier series using some
classical techniques from approximation theory. Before this however, we clarify the assumption of
analyticity in the parameter domain made on the solution in Section 1.8.3.1.

Proposition 3.2. Under Assumption 3.1, for any f ∈ Y∗, consider the solution to the
parametric operator equation u(Z) = L−1(Z)f ∈ X. For any n ∈ N+, if we fix Z∗n ∈ Γ∗n =∏
j∈N+\{n} Γj, then u(Zn) := u(Zn, Z

∗
n) admits an analytic extension to the disc in the complex

plane of radius (1− κ+ β0,n)β
−1
0,n containing Γn = [−1, 1].

Proof. By Proposition 3.1, we know that u exists. We employ a similar argument to the one
in the proof of Proposition 3.1, but single out the Zn dimension. Indeed, by the invertibility of
L0,

L = L0

I+∑
j6=n

ZjL
−1
0 Lj + ZnL

−1
0 Ln


= L0

I+∑
j6=n

ZjL
−1
0 Lj


I−

−I−
∑
j6=n

ZjL
−1
0 Ln

−1

L−1
0 LnZn


=: AB(I− CZn)

where B is invertible since
∥∥∥∑j6=n ZjL−1

0 Lj

∥∥∥ 6∑j6=n β0,j 6 κ−β0,n < 1 and the same Neumann

series argument used above. We also see that ‖C‖|Zn| 6 (1− κ+ β0,n)
−1β0,n|Zn| < 1, so long as

|Zn| < (1 − κ + β0,n)β
−1
0,n which is strictly greater than one. Thus, we employ another Neumann

series argument on I− CZn to show that

(I− CZn)
−1 =

∞∑
k=0

CkZkn.

Inverting f, we have

u(Zn) =

∞∑
k=0

ZknC
k(AB)−1f,

and thus u is analytic in D(1−κ+β0,n)β
−1
0,n

=
{
z ∈ C | |z| 6 (1− κ+ β0,n)β

−1
0,n

}
. Note also that we

still have the same stability estimate

‖u(Zn)‖X 6
‖f‖Y∗

(1− κ)µ0
.

�
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Remark 3.4. The previous argument shows that discs in the complex plane exist where the
restrictions of the solution are analytic whose size depends on the norms of the coefficients
β0,n. We can also reverse our perspective and start with some set of radii ρ = (ρn)n∈N+

defining discs Dρn where we want the restrictions of the solution to be analytic (cf. the
ovular regions Σn with quasi-radial coordinate τn in Section 1.8.3.1 containing the elliptic
regions Ern with quasi-radial coordinate rn where the Chebyshev series expansion for u(Zn) is
convergent and we have Dρn containing Σn containing Ern.). If we have this as the starting
point, we can require then that

(3.6)
∑
n∈N+

ρnβ0,n 6 1− δ,

which by the same argument will show that u(Zn) is analytic in Dρn for any fixed Z∗n ∈ D∗n =∏
j6=nDρj. Additionally, we will see that I +

∑
n∈N+

ZnL
−1
0 L−1

n is invertible with inverse
having norm bounded by δ−1. Therefore, we will have the stability estimate

(3.7) ‖u(Z)‖X 6
‖f‖Y∗
δµ0

.

Definition 3.2. A sequence of radii ρ = (ρn)n∈N+ is called δ-admissible if (3.6) holds for
some 0 < δ < 1− κ.

Example 3.2. For any δ < 1 − κ, we have that ρ = 1−δ
κ > 1, and by Assumption 3.1, the

constant sequence ρn = ρ is δ-admissible. Instead of increasing the analyticity equally across
all directions, we can interpret the proof of Proposition 3.2 as giving all of the analyticity to
the single dimension Zn. The same argument will give the δ-admissible sequence of ρ∗n = 1

and ρn = 1−δ−κ+β0,n
β0,n

Under these assumptions, we now show the promised result of exponential decay of the Cheby-
shev coefficients ûν in terms of the size of the analyticity regions of u.

Proposition 3.3 ([23], Proposition 4.1). For any δ-admissible sequence ρ,

‖ûν‖X 6
‖f‖Y∗
δµ0

2‖ν‖0/2ρ−ν,

where ρ−ν =
∏
n∈N+

ρ−νnn .

Proof. We will proceed by directly bounding the integrals defining the Chebyshev coefficients
as given in (1.36). First for ν = 0, the formula for û0 gives

‖û0‖X 6
∥∥∥∥∫
Γ

u(z)π(z) dz

∥∥∥∥
X

6 sup
Z∈Γ
‖u(Z)‖X 6

‖f‖Y∗
δµ0

,

since Γ is a probability space, and δ-admissibility implies the stability estimate (3.7). Now fixing
any ν ∈ Λ \ {0}, and relabeling supp(ν) = (nj)

J
j=1 and Γ∗supp(ν) =

∏
j/∈supp(ν) Γj

ûν =

∫
Γ∗supp(ν)

(∫1
−1
· · ·

(∫1
−1
u(z)φνn1 (zn1)πn1(zn1) dzn1

)
· · ·φνnJ (znJ)πnJ(znJ) dznJ

)
dz∗

where dz∗ =
⊗
j/∈supp(ν) πj(zj) dzj. We will work with the inner integral (and to ease notation let

νn1 = n
′), and iterate the techniques for the remaining dimensions in the support of ν.
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Now, by the change of variables zn = cos(θ) followed by the further change of variables ζ = eiθ,∫1
−1
u(zn, z

∗
n)φn ′(zn)πn(zn) dzn =

√
2

π

∫π
0

u(cos(θ), z∗n) cos
(
n ′θ

)
dθ

=

√
2

2π

∫π
−π
u(cos(θ), z∗n) cos

(
n ′θ

)
dθ

=

√
2

2iπ

∫
|ζ|=1

u

(
ζ+ ζ−1

2
, z∗n

)
ζn
′
+ ζ−n

′

2

dζ

ζ

=

√
2

4iπ

∫
|ζ|=1

u

(
ζ+ ζ−1

2
, z∗n

)
ζn
′−1 dζ

+

√
2

4iπ

∫
|ζ|=1

u

(
ζ+ ζ−1

2
, z∗n

)
ζ−(n ′+1) dζ.

The final step is to use the analyticity of u and Cauchy’s theorem to deform the integration region
in terms of ρn and it will turn out that we need u to be analytic in the (elliptical) annulus

Aρn =

{
ζ+ ζ−1

2
| ρ−1n 6 |ζ| 6 ρn

}
.

This will allow us to integrate the top integral over |ζ| = ρn and the bottom over |ζ| = ρ−1n .
Noting that for any 1 < σ 6 ρn, we have{

ζ+ ζ−1

2
| |ζ| = σ

}
=

{
σ+ σ−1

2
cos(θ) + i

σ− σ−1

2
sin(θ) | θ ∈ [0, 2π)

}
= Elog(σ)

(that is, the “Bernstein ellipses” which define the region of convergence of the Chebyshev expansion
in (1.51) with quasi-radial coordinate µn = log(σ)), we see that the semi-axes of these ellipses are
both bounded by σ < ρn and so Elog(σ) ⊂ Dρn , where u(zn, z

∗
n) is analytic by δ-admissibilty.

Additionally, for the same σ, we have the complementary equality for the reciprocal{
ζ+ ζ−1

2
| |ζ| = σ−1

}
=

{
σ+ σ−1

2
cos(θ) − i

σ− σ−1

2
sin(θ) | θ ∈ [0, 2π)

}
= Elog(σ),

just traversed in reverse. This gives that the entire elliptical annulus Aρn ⊂ Dρn . Since the product
of u with any power of ζ is also analytic in this annulus, we may apply Cauchy’s theorem to the
two integrands at hand, giving∫1

−1
u(zn, z

∗
n)φn ′(zn)πn(zn) dzn

=

√
2

4iπ

[
ρn
′−1
n

∫
|ζ|=ρn

u

(
ζ+ ζ−1

2
, z∗n

)
dζ+ ρn

′+1
n

∫
|ζ|=ρ−1n

u

(
ζ+ ζ−1

2
, z∗n

)
dζ

]
.

Applying ‖·‖X and bringing inside the integral, we find∥∥∥∥∥
∫1
−1
u(zn, z

∗
n)φn ′(zn)πn(zn) dzn

∥∥∥∥∥
X

6
√
2ρn

′
n sup
Z∈Γ
‖u(Z)‖X 6

√
2ρn

′
n

‖f‖Y∗
δµ0

.

However, if we first iterate the application of Cauchy’s theorem to each nontrivial integral in the
definition of ûν before bringing the norm inside the integral, we find (after correcting our relabeling
of νn = n ′)

‖ûν‖ 6 2‖ν‖0/2ρν
‖f‖Y∗
δµ0

,

as desired. �
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We now work to show that û ∈ `ω,p(Λ) for some 0 < p 6 1 and weight sequence ω The
outline will be to use Proposition 3.3 for a constructed δ-admissible sequence ρ using some further
assumptions on summability of β0 when weighted by a set of auxiliary weights b working on the
dimensions of the parameters. Then based on the structure of ρ and the weighted summability of
β0, we will show weighted (with respect to the gPC indices) summability of û under a new set of
weights ω relating to b in a manner which meshes well with the requirements for the recovery by
weighted `1 minimization in Chapter 2.

Theorem 3.2 ([23], Theorem 4.3). Suppose that in addition to Assumption 3.1, the sequence
β0,n =

∥∥L−1
0 Ln

∥∥ satisfies summability with respect to a set of weights b = (bn)n∈N+
with

bn > 1 for all n ∈ N+ in the sense that

(3.8)
∑
n∈N+

β0,nb
(2−p)/p
n 6 κb,p < 1,

∑
n∈N+

β
p
0,nb

(2−p)
n <∞.

For any θ > 1 construct the set of weights ω indexed by Λ as

ων = θ‖ν‖0bν, ν ∈ Λ.

Then û ∈ `ω,p(Λ).

Proof. We first construct a δ-admissible set for β0 denoted ρ for some δ to be determined. For
notational convenience, for any number a > 1, we denote ã = a(2−p)/p. We can partition N+ into
two pieces E t F defined so F is the set indices of the tail sum

∑
n∈F β0,nb̃j which makes this tail

smaller than some εF > 0 which is possible by (3.8). Additionally, we can use another parameter
α ′ > 0 to shrink the finite sum α ′

∑
n∈E β0,nb̃j under some εE > 0. We use this partition to

then define the δ-admissible sequence ρ separately on E and F. Plugging into the sum concerning
δ-admissibility, we have ∑

n∈N+

ρnβ0,n =
∑
n∈E

ρnβ0,n +
∑
n∈F

ρnβ0,n.

On our first pass, we use our choices for E and F to define

ρ ′n =

{
α ′b̃n, if n ∈ E
b̃n, if n ∈ F.

Thus, ∑
n∈N+

ρ ′nβ0,n 6 α
′
∑
n∈E

β0,nb̃j +
∑
n∈F

β0,nb̃j 6 εE + εF 6 1− δ.

for εE, εF chosen suitably. Obviously, we have a significant amount of freedom in our parameter
choices here which we will eventually need to use to help us achieve our goal of weighted summa-
bility. In particular, we are not sure that the coefficient decay guaranteed by Proposition 3.3 for
this δ-admissible sequence,

‖ûν‖X 6
‖f‖Y∗
δµ0

2‖ν‖0/2
∏
n∈E

(α ′b̃n)
−νn
∏
n∈F

b̃−νnn ,

will be useful. Making the simplest definition for ων in terms of b as ων =
∏
n∈suppν θb

νn
n =

θ‖ν‖0bν (where θ is a parameter useful in scaling the weights to dominate L∞ norms of Chebyshev
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(or possibly other) gPC polynomials), we attempt to bound ‖û‖ω,p. Indeed

(3.9)

‖û‖ω,p =
∑
ν∈Λ

ω2−pν ‖ûν‖p

=
∑
ν∈Λ

ω̃pν‖ûν‖
p

6

(
‖f‖Y∗
δµ0

)p∑
ν∈Λ

θ̃p‖ν‖02p‖ν‖0/2
∏
n∈E

b̃pνnn (α ′b̃n)
−pνn

∏
n∈F

b̃pνnn b̃−pνnn

= Cpδ

∑
ν∈Λ

(
√
2θ̃)p‖ν‖0

∏
n∈E

(α ′)−pνn

= Cpδ

∑
νE+νF∈Λ

(
√
2θ̃)p(‖νE‖0+‖νF‖0)

∏
n∈E

(α ′)−pνn

= Cpδ

∑
ν∈ΛE

(
√
2θ̃)p‖ν‖0

∏
n∈E

(α ′)−pνn

∑
ν∈ΛF

(
√
2θ̃)p‖ν‖0

 ,
where ΛE and ΛF are the multiindices supported on E and F respectively. Since the summand in
the second term is always bounded below by one and ΛF is (very) infinite, this strategy fails at
showing that the norm is finite. Thus, it seems that our choice of ρ ′n for n ∈ F was too hasty.

Before we revise, let us consider the first term in the product to see whether our choice of ρ ′n
on E was any good. We start by enumerating E = {e1, e2, . . . eN}. Then∑

ν∈ΛE

(
√
2θ̃)p‖ν‖0

∏
n∈E

(α ′)−pνn =

∞∑
νe1=0

· · ·
∞∑

νeN=0

(
√
2θ̃)p‖ν‖0(α ′)−pνe1 · · · (α ′)−pνeN .

We can also split up (
√
2θ̃)p‖ν‖0 in terms of νe1 , . . . νeN by letting

q(νn) =


(√
2θ̃
)p
, if ν > 1

1 if ν = 0,

giving (
√
2θ̃)p‖ν‖0 = q(νe1) · · ·q(νeN). Thus,∑

ν∈ΛE

(
√
2θ̃)p‖ν‖0

∏
n∈E

(α ′)−pνn =

 ∞∑
νe1=0

q(νe1)(α
′)−pνe1

 · · ·
 ∞∑
νeN=0

q(νeN)(α
′)−pνeN


=

 ∞∑
j=0

q(j)(α ′)−pj

N

=

1+ (
√
2θ̃)p(α ′)−p

∑
j=0

(α ′)−pj

N .
Now, if α ′ > 1, we find this final geometric sum is finite and thus so is the entire quantity. So
when revising our original analysis, we should replace ρ ′n = α ′ with some ρn > 1 for all n ∈ E.

Let us return to our choice of ρ ′n and replace it by ρn which will actually produce a finite norm.
As just determined, for n ∈ E, we wish to choose ρn > 1. To do this, instead of letting α ′ > 0 such
that

α ′
∑
n∈E

β0,nb̃j < εE,
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we write α ′ = α−1 with α > 1. Additionally, we were easily able to prove that ρ ′n was δ-admissible
when ρ ′n = β̃n for n ∈ F, the only problem was that the b̃−pνnn in the coefficient decay estimate was
canceled by the factor of b̃pνnn in the definition of ων. Thus, for n ∈ F, letting ρn = max{b̃n, cn}
will allow for us to still use this so long as cn also plays nicely in the δ-admissibility proof as well
as is able to help mitigate the infinite growth in the second term of the product bounding the norm
above.

To summarize, let

ρn =

{
αb̃n, if n ∈ E
max{b̃n, cn} if n ∈ F,

where cn is to be determined. As before,∑
n∈N+

ρnβ0,n 6 α
∑
n∈E

β0,nb̃n +
∑
n∈F

β0,nb̃n +
∑
n∈F

β0,ncn

6 α ′
∑
n∈E

β0,n +
∑
n∈Λ

β0,nb̃n +
∑
n∈F

β0,ncn

6 εE + κb,p +
∑
n∈F

β0,ncn.

Now, the factor of κb,p forces us to choose δ in terms of κb,p. Since δ must be strictly bounded
by one, we can choose for example δ = (1− κb,p)/2. Thus, we need

εE + κb,p +
∑
n∈F

β0,ncn 6 1− δ =
1+ κb,p

2
⇐⇒ εE +

∑
n∈F

β0,ncn 6
1− κb,p

2
= δ.

Now, recall that E (and therefore α) depends on F, and F was chosen to make the tail sum smaller
εF. We can actually use the c terms to pick up the slack here, and save determining εF for later.
Thus, if we specify εE = δ/2 we simply need to specify cn so that

∑
n∈F β0,ncn 6 δ/2. There is

again a lot of freedom here, but it turns out that for any ν ∈ ΛF the choice

cn =
δνn

2‖ν‖1β0,n
works well (and has been historically successful in arguments of a similar flavor [12, 13]) in bounding
the problematic second factor above.

Now using the δ-admissibility bound again with the more general ρn and repeating the argu-
ment to bound ‖û‖ω,p in (3.9), we obtain

‖û‖ω,p 6 C
p
δ

∑
ν∈ΛE

√
2θ̃
p‖ν‖0 ∏

n∈E
α−pνn

∑
ν∈ΛF

(
√
2θ̃)p‖ν‖0

∏
n∈F

b̃pνnn min
{
b̃−pνnn , c−pνnn

} .
As previously discussed, the first factor is finite, so it suffices to bound the second term. If we
choose cn 6 1, (b̃n/cn)pνn > 1 allowing us to bound the second factor as∑

ν∈ΛF

(
√
2θ̃)p‖ν‖0

∏
n∈F

(
b̃n

cn

)pνn
.

Plugging in the formula for cn (and letting gn = β0,n2/δ), this reduces to showing that the
sequence (

(
√
2θ̃)‖ν‖0

∏
n∈F

(
‖ν‖1b̃ngn

νn

)νn)
ν∈ΛF

is in `p(ΛF).
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In order to bound the terms of this sequence, we make use of the Stirling estimates
n!en

e
√
n
6 nn 6

n!en√
2π
√
n

for all n > 1. Rewriting the product, we find∏
n∈F

(
‖ν‖1b̃ngn

νn

)νn
=
‖ν‖‖ν‖11∏
n∈F ν

νn
n
b̃νgν

6
‖ν‖1!e‖ν‖1

∏
n∈Fmax{1, e

√
νn}∏

n∈F νn!eνn
b̃νgν

=
‖ν‖1!
ν!

∏
n∈F

max{1, e
√
νn(b̃ngn)

νn},

where we employ the maximum to account for the case where νn = 0. Bounding (
√
2θ̃) 6∏

n∈F(
√
2θ̃)νn , we have

(
√
2θ̃)‖ν‖0

∏
n∈F

(
‖v‖1b̃ngn

νn

)νn
6
‖ν‖1!
ν!

∏
n∈F

max{1, e
√
νn(
√
2θ̃b̃ngn)

νn}.

Noting that e
√
νn 6 eνn for νn > 1 (which can be seen by comparing derivatives), we replace the

maximum with
max{1, e

√
νn(
√
2θ̃b̃ngn)

νn} 6 (
√
2θ̃eb̃ngn)

νn =: hνnn .

Noting that

hn 6
2e
√
2θ̃

δ
β0,nb̃n.

By the assumption (3.8), h ∈ `p(F), and using our original choice of F,

‖h‖`1(F) 6
2e
√
2θ̃

δ
εF.

Thus choosing εF < δ/(2e
√
2θ̃) gives that ‖h‖`1(F) < 1.

But where does this get us? We have shown that the sequence we wish to show is in `p(ΛF) is
bounded by a sequence

‖ν‖1!
ν!

hν

where h ∈ `p(F), and ‖h‖`1(F) < 1. The proof is then finished by employing the following lemma.
�

Lemma 3.1 ([12], Theorem 7.2). For 0 < p 6 1, the sequence
(
‖ν‖1!
ν! h

ν
)
ν∈Λ

∈ `p(Λ) if (and
only if) h ∈ `p(N+) and ‖h‖`1(N+) < 1.

Proof. We prove only the if direction which is the only direction needed to finish the proof
of Theorem 3.2. We start by proving a bound on the simpler sequences of the form {αν}ν∈Λ [12,
Lemma 7.1]. By the factoring argument used to prove the finiteness of the first factor bounding
‖û‖ω,p in the proof of Theorem 3.2 and summing the resulting geometric series, we find

‖αν‖p
`p(Λ) =

∏
n∈N+

1

1− αpn
,

for αn < 1 for all n. Additionally, we have

1 6 1− αpn +
1− αpn
1− ‖α‖p∞α

p
n =⇒ 1

1− αpn
6 1+

1

1− ‖α‖p∞α
p
n,
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and thus

log
(
‖αν‖p

`p(Λ)

)
6
∑
n∈N+

log
(
1+

1

1− ‖α‖p∞α
p
n

)
6

1

1− ‖α‖p∞
∑
n∈N+

αpn =
‖α‖p

`p(N+)

1− ‖α‖p∞ ,
giving the bound

(3.10) ‖αν‖`p(Λ) 6 exp

(
‖α‖`p(N+)

p(1− ‖α‖p∞)
)
.

Additionally, for any ‖γ‖`1(N+), by the multinomial theorem,

(3.11)
∥∥∥∥‖ν‖1!γνν!

∥∥∥∥
`1(Λ)

=

∞∑
k=0

∑
‖ν‖1=k

k!
ν!
γν =

∞∑
k=0

∑
n∈N+

γn

k =
1

1− ‖γ‖`1(N+)

.

Now, we assume we can factor hn = γnαn where

‖γ‖`1(N+) < 1, ‖α‖∞ < 1, ‖α‖`p ′(N+) <∞,
for p ′ = p/(1 − p). Separating into these factors, applying Hölder’s inequality, and the bounds
(3.10), and (3.11),∑

ν∈Λ

(
‖ν‖1!
ν!

hν
)p

=
∑
ν∈Λ

(
‖ν‖1!
ν!

γν
)p
ανp

6

(∑
ν∈Λ

‖ν‖1!
ν!

γν

)p(∑
ν∈Λ

αν
p
1−p

)1−p

6

(
1

1− ‖γ‖`1(N+)

)p
exp

(
(1− p)‖α‖`p ′(N+)

1− ‖α‖p
′∞

)
<∞.

In order to show that the factors γ, α exist, we start in a similar fashion to the previous proof,
fixing some cutoff point N such that the tail is bounded by∑

n>N

hpn < δ

for some δ > 0 to be determined which is possible since h ∈ `p(N+). We then define the factors

γn =

{
(1+ δ)hn, if n 6 N

h
p
n, if n > N,

αn =

{
1
1+δ , if n 6 N

h
1−p
n , if n > N.

Since ‖h‖∞ < 1, we also have ‖δ‖∞ 6 1. Additionally, we calculate

‖γ‖`1(N+) = (1+ δ)
∑
n6N

hn +
∑
n>N

hpn < (1+ δ)‖h‖`1(N+) + δ.

Choosing δ = (1− ‖h‖`1(N+))(1+ ‖h‖`1(N+))
−1 makes this sum strictly less than one. Finally,∑

n∈N+

α
p/(1−p)
n = N

(
1

1+ δ

)
+
∑
n>N

hpn <∞,
since h ∈ `p(N+). Thus, the necessary factors to show that

(
‖ν‖1!
ν! h

ν
)
ν∈Λ

∈ `p(Λ) exist, and the
proof is complete. �
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Example 3.3. Depending on the structure of the sequence β0 satisfying just summability

(3.12)
∑
n∈N+

β0,n 6 κ < 1

as in Assumption 3.1, we can derive a set of weights b so that the properties in (3.8) hold
and therefore the corresponding solution has gPC coefficients û ∈ `ω,p(Λ).

Trivial weights: Taking b = 1, (3.12) satisfies the first condition of (3.8). To satisfy the second
part, we can simply require β0 ∈ `p(N+). Then the weights that we apply to the
function have the form ων = θ‖ν‖0. Then û ∈ `ω,p(Λ) tells us that û must have
smaller terms which involve large numbers of dimensions ‖ν‖0 to counteract the
exponential growth of θ‖ν‖0 in the number of dimensions.

Constant weights: Instead of taking b = 1, we can try and push (3.12) to its limits, and take
bn = 1+ τ so that∑

n∈N+

β0,nb
(2−p)/p
j 6 (1+ τ)(2−p)/pκ = κν,p < 1,

where (1 + τ)(2−p)/p makes up some of the multiplicative slack κ−1 between κ and
1. Again, β0 ∈ `p(N+) also implies β0 ∈ `b,p(N+), so (3.8) is satisfied. Then the
gPC weights are ων = θ‖ν‖0(1+τ)‖ν‖1. Now these weights will grow exponentially in
the number of nontrivial dimensions ‖ν‖0 as well as in the total degree of the gPC
polynomials. Since the coefficients of the solution satisfy û ∈ `ω,p(Λ), as before,
they will not be large when a large number of dimensions are involved as well as
not be large when corresponding to high degree gPC polynomials. This hints at our
intuition of u being well represented by a sparse gPC expansion.

Polynomial weights: Now, if we assume some further structure on the summability (3.12), such
as having the norms decay polynomially, we can derive more interesting weights
characterizing anisotropic behavior. In particular, we assume β0,n 6 cn−t for t > 1
and c > 0 small enough to have∑

n∈N+

β0,n 6 c
∑
n∈N+

n−t < 1,

so that (3.12) is satisfied. For the first condition of (3.8), we let b(2−p)/pn = γnτ for
some g > 1 so that ∑

n∈N+

β0,nb
(2−p)/p
n 6 cγ

∑
n∈N+

n−(t−τ).

Choosing τ < t− 1 small enough will ensure that∑
n∈N+

n−(t−τ) 6
∑
n∈N+

n−t + ε 6
1

c
+ ε,

by continuity of the Riemann-zeta function for t > 1. Choosing ε = (γ − 1)/c gives
the first condition of (3.8). To show that β0 ∈ `b,p(N+), we consider∑

n∈N+

β
p
0,nb

2−p
n 6 cpγp

∑
n∈N+

n−p(t−τ),
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which is finite when in addition to τ < t− 1, we also have τ < t− 1/p which is only
valid for p > 1/t. Now, under this setup, our gPC weights take the form

ων = θ‖ν‖0
∏

n∈suppν
γp̃νnnp̃τνn ,

for p̃ = p/(2 − p). As always, these weights grow in the number of dimensions.
However, for a fixed dimension, we see that the growth is exponential as νn increases,
and thus, the gPC coefficients of the solution should decay exponentially in fixed
dimensions. For a fixed multiindex ν taken as a truncation of the constant multiindex
j · 1 for j ∈ N+ some constant, we see that the weights will grow polynomially in the
number of dimensions. Thus, in general, for large dimensions, the coefficients will
have to be polynomially decaying.

Exponential weights: Finally, we consider the case where the operator norms are bounded ex-
ponentially, as β0,n 6 cαn. When c > 0 is small enough and α < 1, we have
β0 ∈ `1(N+) as ∑

n∈N+

β0,n 6 c
∑
n∈N+

αn 6
cα

1− α
< 1,

For weights, we proceed analogously to the polynomial case. To ease notation, choose
some b(2−p)/pn = σn for some σ > 1, which gives∑

n∈N+

β0,nb
(2−p)/p
n 6 c

∑
n∈N+

(ασ)n =
cασ

1− ασ

so long as σ < 1/α. As before, continuity of cx/(1 − x) gives that for some σ close
enough to one depending on c and α, we can have

cασ

1− ασ
6

cα

1− α
+ ε,

where we can choose ε to be contained in the slack 1 − cα/(1 − α), thus giving the
first condition of (3.8). For β ∈ `b,p(N+), we calculate∑

n∈N+

β
p
0,nb

2−p
n 6 cp

∑
n∈N+

(ασ)pn,

which is still convergent no matter the value of p < 1 when σ < 1/α. We find the
gPC weights are

ων = θ‖ν‖0
∏

n∈supp(ν)

σp̃nνn

where p̃ = p/(2− p) as before. Here for fixed n , we again have exponential increase
in νn. However, for νn a fixed constant vector as before, increase in n is exponen-
tial. Thus, we have that the corresponding solution coefficients should also decay
exponentially for fixed gPC polynomial orders as the dimension increases.

3.3. The Compressive Sensing Petrov-Galerkin Algorithm

We have achieved our goal of being able to apply the results of Chapter 2, in particular,
Corollary 2.2. Instead of applying the compressive sensing reconstruction to our solution u which
is in general X-valued, we apply a functional G ∈ X∗ (e.g. some spatial QoI of the solution of a UQ
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problem) to produce a new function F : Γ → C defined by F(Z) = G(u(Z)). We additionally have
the Chebyshev-gPC expansion for F

F =
∑
ν∈Λ

F̂νφν :=
∑
ν∈Λ

G(ûν)φν,

which by the boundedness of G inherits the result of F ∈ Sω,p(Λ) from Theorem 3.2 under the
conditions defined there (i.e. weighted `p summability of β0 with respect to a set of weights b > 1
and ‖β‖b(2−p)/p,1 < 1) with the weight sequence

ων = θ‖ν‖0bν.

With this setup, we define Algorithm 10 to produce an approximate solution to (3.1) and prove an
associated convergence result Theorem 3.3.

Algorithm 3.1: Calculating the approximate solution to a parametric PDE using compressive
sensing and Petrov-Galerkin (CSPG) discretization.
Input:

• Weights (bn)n∈N+ > 1 satisfying (3.8) for some 0 < p < 1.
• Accuracy ε of the Petrov-Galerkin approximation and sparsity parameter s.
• Index set Λ0 = {ν ∈ Λ | ω2ν 6 s/2} where ων = 2‖ν‖0/2bν such that the cardi-
nality M := |Λ0| <∞ is finite with maximum dimension N = maxν∈Λ0,νn 6=0 n.
• Number of samples K � s log(M) log3(s)

Result: An approximation F](Z) to the functional G applied to the solution u(Z) of (3.1).
1 Draw samples Z(1), . . . , Z(K) ∈ Γ = [−1, 1]N independently from the tensorized Chebyshev

measure (3.1).
2 for k = 1, . . . , K do
3 Obtain the Petrov-Galerkin discretization uN,h(Z(k)) of the dimension-truncated

problem for some h depending on ε > 0 such that |G(u(Z(k))) −G(uN,h(Z
(k)))| < ε.

4 yk ← G(uN,h(Z
(k))).

5 for ν ∈ Λ0 do Calculate the corresponding sample matrix row.
6 Ak,ν ← φν(Z

(k)).
7 end
8 end
9 Compute the solution F̂] to the weighted `1-minimization program

minimize
z∈C

‖z‖ω,1 subject to ‖Az− y‖2 6 2
√
Kε.

10 F] ←
∑
ν∈Λ0 F̂

]
νφν.

Theorem 3.3 ([23], Theorem 5.1). With Assumptions 3.1, 3.2, and 3.3, let u =
∑
ν∈Λ ûνφν

be the true solution to the affine parametric PDE (3.1), and F = G(u) =
∑
ν∈Λ F̂νφν with

F̂ν = G(uν). Running Algorithm 10 with accuracy parameter ε > 0 and sparsity parameter s
satisfying

(3.13) 21/ps1/2−1/p‖FΛR‖ω,p 6 ε 6 Es
1/2−1/p‖FΛR‖ω,p,
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for E > 21/p a constant independent of s, produces a solution F] that for some universal
constants B,C > 0, with probability exceeding 1− 2M− log3(s), satisfies

∥∥F] − F∥∥∞ 6 B‖F‖ω,ps1−1/p 6 B ′F
(
log(M) log3(K)

K

)1/p−1
,

∥∥F] − F∥∥
2
6 C‖F‖ω,ps

1/2−1/p 6 C ′F

(
log(M) log3(K)

K

)1/p−1/2
,

where B,C depend only on E and B ′F, C
′
F depend only on B, C, and ‖F‖ω,p.

Proof. The argument is a copy of the proof of Corollary 2.2 where instead of concluding
bounds in terms of σs/2(F)ω,1, we use factors of s and ‖F‖ω,p arising from the Stechkin estimate
Theorem 1.5 and the definition of Λ0. Indeed, to handle the resulting factor of σs(FΛ0)ω,1 in the
weighted minimization error bounds, since F ∈ `ω,p(Λ0) by Theorem 3.2, the weighted Stechkin
estimate implies

(3.14) σs(FΛ0)ω,1 6

(
s− max

ν∈Λ0
ω2ν

)1−1/p
‖FΛ0‖ω,p 6

(s
2

)1−1/p
‖F‖ω,p,

since ω2ν 6
s
2 on Λ0, and 1− 1/p < 0.

As for the `2 norm of the truncated measurements (that is, the values of F − FΛ0 = FΛR with
ΛR = Λ \Λ0 at the measurement points), Lemma 2.4 gives that(

K∑
k=1

F2ΛR
(Z(k))

)1/2
6 2

√
K

s
‖FΛR‖ω,1.

However, on ΛR, we know that
(
s
2

)1/p−1
6
(
ω2ν
)1/p−1 (where the exponents were chosen to match

those in (3.14)) which gives

‖FΛR‖ω,1 =
∑
ν∈ΛR

F̂νων 6
(s
2

)1−1/p ∑
ν∈ΛR

F̂νω
2/p−1
ν =

(s
2

)1−1/p
‖FΛR‖ωα,1,

for α = 2/p − 1. By (2.31) in the proof of Lemma 2.5, we can convert the norm in terms of ωα

into the weighted p-norm with respect to ω, giving

(3.15) ‖FΛR‖ω,1 6
(s
2

)1−1/p
‖FΛR‖ω,p.

Thus

(3.16)

(
K∑
k=1

F2ΛR
(Z(k))

)1/2
6 21/p

√
Ks1/2−1/p‖FΛR‖ω,p 6 2

1/p
√
Ks1/2−1/p‖F‖ω,p.

Since

21/ps1/2−1/p‖FΛR‖ω,p 6 ε

by assumption, we can bound the `2 norm of the noisy measurements as∥∥∥yk − FΛ0(Z(k))
∥∥∥
`2([K])

6
∥∥∥yk − F(Z(k))

∥∥∥
`2([K])

+
∥∥∥FΛR(Z(k))

∥∥∥
`2([K])

6 2
√
Kε,

since each discrete measurement is within ε of the true value F(Z(k)).
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The error bounds from applying the weighted `1 minimization program on the finitely indexed
FΛ0 from Theorem 2.2 return∥∥FΛ0 − F]∥∥∞ 6 B1σs(FΛ0)ω,1 + B2(2√Kε)√ s

K∥∥FΛ0 − F]∥∥2 6 C1√
s
σs(FΛ0) + C2

2
√
Kε√
K
.

An application of (3.14) and (3.13) give∥∥FΛ0 − F]∥∥∞ 6 B ′‖F‖ω,ps1−1/p∥∥FΛ0 − F]∥∥2 6 C ′‖F‖ω,ps1/2−1/p,
for B ′, C ′ depending only on E and p (which, since E and p are in one-to-one correspondence, can
be thought to be depending only on E). On the other hand,

‖F− FΛ0‖∞ 6 ‖FΛR‖ω,1 6
(s
2

)1−1/p
‖F‖ω,p

‖F− FΛ0‖2 6
√
2

s
‖FΛR‖ω,1 6

(s
2

)1/2−1/p
‖FΛR‖ω,p

by (3.15) and (2.28) from the proof of Lemma 2.4. The triangle inequality and these two sets of
estimates give the final error ∥∥F− F]∥∥∞ 6 B‖F‖ω,ps1−1/p∥∥F− F]∥∥

2
6 C‖F‖ω,ps

1/2−1/p,

again for B,C > 0 depending only on E. Since K � s log(M) log3(s), we have in particular that

1

s
.

log3(s) log(M)

K
6

log3(K) log(M)

K
,

giving the error bounds in terms of only K and M as desired. �

Remark 3.5. Note that in order to even run the constrained minimization program in
Algorithm 10, we need to know the constraint ahead of time, that is, we need an approxi-
mation of ε. The only necessity on ε is that given in (3.13), which requires knowledge of
‖FΛR‖ω,p (or we can also rephrase (3.13) to use the possibly easier to compute ‖F‖ω,p with
no change to the proof). However, our only insight into this quantity is through the proofs of
Theorem 3.2 and Lemma 3.1 which are complex and provide loose bounds. The next chapter
will explore alternatives to this constrained weighted `1 minimization problem which do not
rely on bounds for ‖FΛR‖ω,p or even ε and are still convergent under additional, more exotic
errors.

3.4. Approximating the Size of the Truncated Index Set

In order to quantify the choice K � s log(M) log3(s), we recall that s is a parameter chosen
to be in correspondence with ε (or vice versa, we can consider s to be free/fixed and choose ε
accordingly) by (3.13). Thus, we need to know (or have bounds on)

(3.17) M = |Λ0| =
∣∣{ν ∈ Λ | ω2n 6 s/2

}∣∣ = ∣∣∣{ν ∈ Λ | 2‖ν‖0b2ν 6 s/2
}∣∣∣.

We give a general bound for this quantity below and then proceed with the (very) gory details for
some examples of weights as discussed in Example 3.3. We use the convention that lg(x) = log2(x).
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Theorem 3.4 ([23], Theorem 5.3). For a finite weight sequence b ∈ RN>1, define an :=

2 lg(bn) and A = lg(s/2). Then

(3.18) M 6 1+
min{N,bAc}∑

k=1

(A− k)k

k!

∑
S⊆[N]
|S|=k

‖aS‖16A−k

∏
n∈S

a−1n .

Proof. Taking the base-2 logarithm in the definition of Λ0 in (3.17) and decomposing Λ into
all possible supports for ν, we find

(3.19) Λ0 = {ν ∈ Λ | ‖ν‖0 + ν · a 6 A} = {0} t
N⊔
k=1

⊔
S⊆[N],|S|=k

{ν ∈ Nk+ | ν · aS 6 A− k}

where ν · a is the dot product on RN. Thus, we bound the size of the smaller sets of the form
{ν ∈ Nk+ | ν · c 6 B} and sum them. Notice also that these sets are nothing but the anisotropic
total degree index sets.

We proceed by induction on k to show that

(3.20)
∣∣{ν ∈ Nk+ | ν · c 6 B

}∣∣ 6 Bk

k!
∏k
n=1 cn

.

For k = 1, this is true since the largest ν1 ∈ N+ satisfying ν1c1 6 B is ν1 = bB/c1c 6 B/c1. For
general k > 1 and ν ∈ Nk+1+ , we split the dot product into ν · c = ν̄ · c̄+ νk+1ck+1 where v̄ is the
first k-components of the vector v. We then have

(3.21)

∣∣{ν ∈ Nk+1+ | ν · c 6 B
}∣∣ =

∣∣∣∣∣∣
⊔

B−νk+1ck+1>0

{
ν̄ ∈ Nk+ | ν̄ · c̄ 6 B− νk+1ck+1

}∣∣∣∣∣∣
=

bB/ck+1c∑
νk+1=1

(B− νk+1ck+1)
k

k!
∏k
n=1 cn

.

Bounding the sum with an integral, we have

bB/ck+1c∑
νk+1=1

(B− νk+1ck+1)
k 6
∫B/ck+1
0

(B− νk+1ck+1)
k dνk+1 =

1

ck+1

∫B
0

uk du =
Bk+1

(k+ 1)ck+1
.

Plugging this into (3.21) provides the desired inequality. .
Note that in (3.19), we have that A − k 6 0 for any k > bAc, and so there are no ν satisfying

the condition ν · aS 6 A− k by virtue of the fact that a > 0. Thus, it suffices to sum k up to bAc.
Additionally, when

∑
n∈S an > A − k, ν ∈ Nk+ implies that ν · aS > A − k. So it suffices to only

sum over S with ‖aS‖1 6 A − k. Inserting (3.20) into (3.19), taking cardinalities and applying
these bounds gives

M 6 1+
min{N,bAc}∑

k=1

∑
S⊆[N],|S|=k
‖aS‖16A−k

(A− k)k

k!
∏
n∈S an

as desired. �

Corollary 3.1. For s > 2, we consider three different cases of weights on β0 (cf. Exam-
ple 3.3).
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Constant weights: Under the finite dimensional noise assumption with Γ = [−1, 1]N, let bn =

σ = 1 + τ, τ > 0, n ∈ [N] be constant weights (alternatively, consider an infinite-
dimensional parameter space with bn =∞ for n > N). Then

(3.22) M 6

(logσ2(σ2s/2))N, if N 6 log2σ2(s/2),((
1+ 1

lg(σ2)

)
eN
)log

2σ2
(s/2)

if N > log2σ2(s/2).

Polynomial weights: Suppose that bn = cnα for some c > 1 and α > 0. Then there exist Cα,c > 0
and γα,c > 0 such that

(3.23) M 6 Cα,cs
γα,c log(s).

Exponential weights: Let bn = σn for some σ > 1. Then

(3.24) M 6 1+
Cσ

2π
√
logσ(s/2)

(
e3
√
logσ(s/2)

)√logσ(s/2)
.

Proof.

Constant weights: As before, we let an := 2 lg(bn) = lg(σ2) and A = lg(s/2). With these constant
weights, the assumption ‖aS‖1 6 A−k for |S| = k becomes k 6 A/(1+a) = A/(1+lg(σ2)).
We split the analysis into two different cases for N > k, the first being N 6 A/(1+ lg(σ2))
so that ‖aS‖1 6 A− k is always satisfied. Notice that this split occurs when

N 6
lg(s/2)
1+ lg(σ2)

=
lg(s/2)
lg(2σ2)

= log2σ2(s/2),

by the change of base formula. In this case, we also have here that N 6 A so that (3.18)
becomes

M 6 1+
N∑
k=1

(A− k)k

k!

∑
S⊆N,|S|=k

lg(σ2)−k

= 1+

N∑
k=1

(A− k)k

k!

(
N

k

)
lg(σ2)−k

6
N∑
k=0

(
N

k

)
(A/ lg(σ2))k

= (A/ lg(σ2) + 1)N

by the binomial theorem. Substituting A = lg(s/2) and using the same change of base
trick,

M 6 (logσ2(σ
2s/2))N,

as desired.
Now for N > log2σ2(s/2) = A/ lg(2σ2) when k >

⌊
A/ lg(2σ2)

⌋
as above, we have that

the set of all S ⊆ N with |S| = k and ‖aS‖1 6 A− k is empty. Thus, the upper bound in
the first sum can be taken to be

⌊
A/ lg(2σ2)

⌋
. Keeping the rest of the previous argument

the same, we have

M 6

bA/ lg(2σ2)c∑
k=0

(
N

k

)
(A/ lg(σ2))k 6 (A/ lg(σ2))bA/ lg(2σ

2)c
bA/ lg(2σ2)c∑

k=0

(
N

k

)
.
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We bound the sum of the binomial coefficients with a tightening of (2.20). Using part of
this bound and the fact that (N/k)k is increasing in k,

(3.25)
A ′∑
k=1

(
N

k

)
6

A ′∑
k=1

(
N

k

)k
kk

k!
6

(
N

A ′

)A ′ A ′∑
k=1

(A ′)k

k!
6

(
eN

A ′

)A ′
=

(
eN

bA/ lg(2σ2)c

)bA/ lg(2σ2)c
.

If we again use the fact that (eN/A ′)A
′
is increasing in A ′, we see

A ′∑
k=1

(
N

k

)
6

(
eN

A/lg(2σ2)

)A/ lg(2σ2)
.

Using this bound in the one for M above gives

M 6

(
eN

lg(2σ2)
lg(σ2)

)A/ lg(2σ2)
=

((
1+

1

lg(σ2)

)
eN

)log
2σ2

(s/2)

,

finishing the bounds for constant weights.
Polynomial weights: Again, we let an = 2 lg(bn) = 2 lg c + 2α lgn and A = lg(s/2). In general,

all constants in the following calculations will be positive and depend on c and α. First
note that since the weights ω increase polynomially in n and ν, we know that M must
be finite and can contain only ν with support contained in some [N]. In particular, the
we can calculate the largest N by all ν with ων = 2‖ν‖0b2ν 6 s/2. The one allowing for
the largest N with νN 6= 0 should be fully supported on {N} and should be as small as
possible, that is, ν = eN. This gives that bN 6

√
s/4, and so N =

⌊
(s/(4c))1/2α

⌋
.

Now in (3.18), we will need to bound the product
∏
n∈S a

−1
n where S ⊆ [N] and |S| = k

We can uniformly lower bound any an by 2 lg c + 2α except for n = 1 where we must
choose a1 > 2 lg c. Of course 2 lg c is also a lower bound for any other an, so we incur no
harm by upper bounding the product as

2−k(lg c)−1(lg c+ α)−(k−1) = (2 lg c)−1(2 lg c+ 2α)−(k−1) >
∏
k∈S

a−1n ,

just in case 1 ∈ A.
We now have to figure out how many of these products we sum up. We are assigned

to take only index sets with |S| = k and ‖aS‖1 6 A− k. Expanding this second condition
requires that

2α lg

(∏
n∈S

n

)
= 2α

∑
n∈S

lgn 6 A− k(1+ 2 lg c).

The smallest value of the left hand side is when S = [k] giving that 2α lg(k!) 6 A− k(1+

2 lg c). Thus, we instead impose this restriction on k, allowing for S to range over all
S ⊆ [N] with |S| = k (of which there are

(
N
s

)
index sets). This then only makes the sum

larger, upper bounding our value for M.
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Putting these bounds together and summing k up to bAc > min{N, bAc}, we have

M 6 1+
∑

k∈[bAc]
2α lg(k!)6A−k(1+2 lgc)

(
N

k

)
1

k!

(
A− k

2

)k
1

lg c(lg c+ α)k−1

6 1+

(
1+

α

lg c

) ∑
k∈[bAc]

2α lg(k!)6A−k(1+2 lgc)

(
N

k

)
1

k!

(
A

2 lg c+ 2α

)k
,

where in the last step, we simply factored out (lg c+α)/ lg c and removed the subtraction
by k on A.

We now quantify the limits of this summation. To do this, we consider summing up
to the maximum number L such that

(3.26) 2α lg(L!) 6 A− L(1+ 2 lg c).

Since we already know how to bound quantities of the form
∑L
k=1

(
N
k

)
as in the polynomial

weight case, we attempt to find a uniform upper bound for

1

k!

(
A

2 lg c+ 2α

)k
=:

1

k!
Bk

over k so that we can factor this common upper bound from the sum. This exponential
will grow faster than the logarithm so long as B > k. We can see this by rewriting

Bk

k!
= exp

(
k logB−

k∑
`=1

log `

)
.

Under the condition that B > L > `, we have logB > log `, and so adding L− k factors of
logB− log ` > 0 for ` ranging from k+ 1 to L gives the upper bound

(3.27)
Bk

k!
6 exp

(
L logB−

L∑
`=1

log `

)
=
BL

L!
.

Now this bound is valid when B = A
2 lgc+2α is in fact larger than L. When L > 4,

lg(L!) =
L∑
`=1

lg ` > 0+ 1+ lg 3+
L∑
`=4

lg(4) > 1+ 1+ 1+ 1+
L∑
k=5

1 = L.

Thus, (3.26) gives that

(3.28) L 6
A

1+ 2 lg c+ 2α
6

A

2 lg c+ 2α
= B

as desired. From (3.26), increasing A allows L to be larger, so it is only for A below some
threshold depending on c and α that L < 4. Since A is in direct correspondence with s,
this means that there are finitely many value s of s for which this argument does not hold.
By increasing the constants in the bound we obtain M 6 Cα,csγα,c log(s), we can ensure
that this bound still holds for the finitely many index sets generated by the s which force
L < 4. Thus, it suffices to consider only L > 4, where we additionally have (3.28) and
(3.27).
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Using (3.27) and applying (3.25) from the constant weight case above,

M 6 1+

(
1+

α

lg c

)
1

L!

(
A

2 lg c+ 2α

)L L∑
k=1

(
N

k

)

6 1+

(
1+

α

lg c

)
1

L!

(
A

2 lg c+ 2α

)L(
eN

L

)L
6 1+

(
1+

α

lg c

)
1

L!

(
AeN

L(2 lg c+ 2α)

)L
.

We’re now left to bound L! from below, which, by Stirling’s formula (2.11), we obtain

L! = Γ(L+ 1) =
√
2πLLLe−L exp

(
θ(L)

12(L+ 1)
− 1

)
>

√
2πL

e

(
L

e

)L
since 0 6 θ(L) 6 1. Thus

M 6 1+

(
1+

α

lg c

)
e√
2πL

(
Ae2N

L2(2 lg c+ 2α)

)L
6 1+

(
1+

α

lg c

)
e√
2πL

(
Ae2N

L2(2 lg c+ 2α)

)A/(1+2 lg(c2α))
where the second bound is a consequence of (3.28).

All we have left is to remove our dependence on L by finding a lower bound. We start
by noting that since L is the maximal integer such that (3.26) holds, we must have

A 6 2α lg((L+ 1)!) + (L+ 1)(1+ 2 lg c) = 2α lg(L+ 1) + 2α lg(L!) + (L+ 1)(1+ 2 lg c).

Since L > 4, L+ 1 6 5
4L and so

lg(L+ 1) 6 lg
(
5

4

)
+ lg L 6 C1 lg L 6 C1L.

Therefore

A 6 2α lg(L!) + C2L.

An application of Stirling’s formula to now upper bound L! now gives

lg(L!) 6 lg
(√
2πL(L/e)Le1/12L

)
6
1

2
lg(2πLe1/24) + L lg(L/e) 6 L lg(C3L).

Thus,

A 6 L(2α lg(C3L) + C2) 6 L(C4 lg(C5A) + C2),

by (3.28). Finally then

L >
A

C4 lg(C5A) + C2
=

A

C6 lg(C7A)
.
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Applying in our most recent bound for M gives

M 6 1+

(
1+

α

lg c

)√
C8 lg(C7A)

A

(
C9N lg2(C7A)

A

)C10A

6 1+ C11

√
C8 lg(C7 lg(s/2))

lg(s/2)

(
C9N lg2(C7 lg(s/2))

lg(s/2)

)C10 lg(s/2)

6 1+ C11

√
C8 lg(C7 lg(s/2))

lg(s/2)

(
C12s lg2(C7 lg(s/2))

lg(s/2)

)C13 lg(s/2)
,

since N =
⌊
(s/(4c))1/2α

⌋
.

Now we consider

lim
s→∞ lg2(lg(s))

s lg(s)
= lim
t→∞ lg2(t)

t2t
.

Two applications of L’Hosptial’s rule give show that this limit is zero, and therefore

C12s lg2(C7 lg(s/2))
lg(s/2)

C13 lg(s/2)

6 Cc,αs
γc,α log(s),

for Cc,α, γc,α large enough. The same holds for the constant 1 and the square root term,
and therefore

M 6 Cc,αs
γc,α log(s)

as desired.
Exponential weights: Again, since exponential weights force monotonically growing ων in ν and n,

we will have that M is finite and therefore all ν ∈ Λ0 are supported in [N]. Calculating
with the same strategy as before leads us to σN = bN 6

√
s/4 and so N =

⌊
lg(s/4)
2 lg(σ)

⌋
. For

exponential weights, an = 2 lg(bn) = 2n lg(σ). Now, we again note that for any |S| = k,

2 lgσ
∑
n∈S

n = ‖aS‖1 6 A− k =⇒ k 6

√
A

lgσ

by using that
∑
n∈S n >

∑k
n=1 n = (n2 + n)/2 > n2/2. Additionally,

∏
n∈S

a−1n 6 (2 lgσ)−k(k!)−1.

Thus, by a similar reasoning to the previous argument,

M 6 1+

⌊√
A

lgσ

⌋∑
k=1

(
A

lgσ

)k
1

(k!)2

(
N

k

)
.
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Applying the reasoning that k2 6 A/ lgσ for all k being summed over allows us to bound
the exponential and factorial terms as above, giving

M 6 1+

(
A

lgσ

)√A/ lgσ
1

(bA/ lgσc)2

⌊√
A

lgσ

⌋∑
k=1

(
N

k

)

6 1+

(
A

lgσ

)√A/ lgσ
Cσ

2π
√
A/ lg(σ)(e2A/ lg(σ))

√
A/ lg(σ)

(
eN√
A/ lg(σ)

)√A/ lg(σ)

= 1+
Cσ

2π
√
A/ lg(σ)

(
e3N√
A/ lg(σ)

)√A/ lg(σ)
,

by using Stirling’s formula asymptotically. Noting that A/ lg(σ) = logσ(s/2) and

N√
logσ(s/2)

6
logσ(s/4)√
logσ(s/2)

6
√

logσ(s/2),

we have

M 6 1+
Cσ

2π
√
logσ(s/2)

(
e3
√
logσ(s/2)

)√logσ(s/2)
,

as desired.
�

Note that K & s log(M) log3(s) is satisfied when instead of log(M), we use the logarithm of the
upper bounds in Corollary 3.1. Additionally, with this logarithm substituted for log(M), taking
K asymptotically equal to this value allows us to similarly rephrase the recovery guarantees in
Theorem 3.3 to remove dependence on M. This final example explores these new bounds for the
cases of weights given in Corollary 3.1.

Example 3.4.
Constant weights: Rewriting the conditions in (3.22) as conditions on s, we see that

M 6


(
logσ2(σ2s/2)

)N
, if s > 2(2σ2)N((

1+ 1
lg(σ2)

)
eN
)log

2σ2
(s/2)

if s < 2(2σ2)N.

Thus, when s > 2(2σ2)N,

log(M) 6 N log (logσ2(s/2) + 1)

6 N log(Cσ log(s))

6 CσN log log(s).

When s < 2(2σ2)N,

log(M) 6 log2σ2(s/2) log
(
1+

1

lg(σ2)
eN

)
6 Cσ log(s) log(N).

Thus, taking a number of measurements asymptotic to

K �

{
s log4(s) log(N), if s < 2(2σ2)N

sN log3(s) log log(s) if s > 2(2σ2)N,

will allow for the use of Theorem 3.3.
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Polynomial weights: For polynomial weights, (3.23) gives

log(M) 6 Cα,c log2(s).

Thus, a number of measurements asymptotic to

K � s log5(s)

suffices to apply Theorem 3.3. In this case, we can also solve for s to rewrite the
error bounds, since this number of measurements implies

1

s
6

log5(s)
K

6
log5(K)
K

.

Thus, the approximation F] to the functional applied to the true solution satisfies

∥∥F] − F∥∥∞ 6 B ′F
(
log5(K)
K

)1/p−1
∥∥F] − F∥∥

2
6 C ′F

(
log5(K)
K

)1/p−1/2
.

Exponential weights: In the case of exponential weights, (3.24) shows that the number of points
in the truncated index set M actually grows slower than s, and will therefore be
overtaken for some s large enough. Indeed, we can bound M in this case by

M 6 C1 log(s)
C2
√

log(s).

Considering the limit

lim
s→∞ log(s)C

√
log(s)

s
= lim
t→∞ tC

√
t

exp(t)
= exp

(
lim
t→∞

√
t(C log(t) −

√
t)
)
= 1,

since log(t) = o(
√
t), we thus see that M grows slower than s asymptotically. In

particular, this means that the number of measurements K > s overtakes the number
of degrees of freedom in our approximation, leading to an over-determined system, in
which case there may be more efficient (e.g. least squares) reconstruction algorithms.

Remark 3.6. Recall that in Theorem 1.8, we saw that the error in an anisotropic sparse
grid approximation of the true solution decays algebraically in the number of measurements
at a rate depending on the sum of the sizes of the regions of analyticity of the true solution.
As shown above, the decay in error for polynomial weights in the compressive sensing Petrov-
Galerkin algorithm satisfies a similar structure, up to logarithmic factors, where the exponent
only depends on p rather than the entire sum of the regions of analyticity. However, by the
discussion in Example 3.3, when the norms β0,n of the nominal operators decay polynomially,
the value of p is directly determined by the rate of this polynomial decay which also determines
the δ-admissible sequences and sizes of analyticity regions. Thus, the rate in both cases are
a direct consequence of the sums of the sizes of the analyticity regions (or equivalently the
summability of the operator norms of the original affine parametric operator).



CHAPTER 4

Alternative Reconstruction Methods

4.1. A Summary of Errors

In previous chapters, we have focused our attention on using a small number (relative to the
length of the gPC expansion) of parametric measurements of some solution u(Z) to an affine
parameterized PDE (or more generally, any compressible function with a valid gPC expansion) to
produce an accurate approximation. For simplicity, in the remainder of these notes, we consider
u to be a functional applied to the solution so that samples are complex numbers rather than
elements in X(Ω). The general strategy, e.g., the one outlined in Algorithm 10, is to use some
numerical approximation of (a functional of) the solution (e.g., a Petrov-Galerkin discretization)
at fixed parameter values uN,h(Z(k)) as noisy samples of the solution u(Z(k)) which we further
regard as noisy samples of a truncated version of the solution uΛ0(Z

(k)).
If we denote yk the value of the measurement uN,h(Z(k)), we have

yk = u(Z(k)) + edisc = uΛ0(Z
(k)) + etrunc + edisc = AûΛ0 + e

trunc + edisc.

We then use a constrained weighted `1 minimization problem

(4.1) minimize
z∈CM

‖z‖ω,1 subject to ‖Az− y‖2 6
∥∥etrunc + edisc∥∥

2
6
∥∥etrunc∥∥

2
+
∥∥edisc∥∥

2

to reconstruct an accurate approximation of the truncated coefficient vector of the solution de-
pending on the size of these errors and sparsity parameters.

Though we can choose
∥∥edisc∥∥

2
to be as small as desired (assuming a convergent numerical PDE

solution scheme), as mentioned in Remark 3.5, estimating
∥∥etrunc∥∥

2
requires a priori knowledge

of the solution and its behavior on ΛR := Λ \ Λ0. Quantitatively, for u ∈ `ω,p, by virtue of the
Stechkin estimate, we have shown in (3.16) that∥∥etrunc∥∥

2
6 21/p

√
Ks1/2−1/p‖uΛR‖ω,p.

Thus, choosing either s to be large or the weights so that Λ0 captures the majority of the behavior
of u, we can suppose that this error is small. However, without more detailed information on the
parametric operator or the solution itself, we cannot provide an accurate estimate of ‖uΛR‖ω,p,
and therefore cannot effectively constrain the weighted `1 minimization problem.

Before considering alternative unconstrained methods which allow for minimization with re-
spect to unknown noise, we introduce a further type of noise. Since we can group edisc + etrunc =:

ebounded as errors which are pervasive throughout each sample but are known to be bounded (by
the previous discussion), we now consider further error which may be arbitrarily unbounded but
sparse. This type of error is referred to as corruption error. As an example, we see that the
task of obtaining the samples uN,h(Z(k)) is entirely parallelizable. Performing these calculations
in a distributed setting, we could consider the case of a faulty node which returns nonsense (or
perhaps nothing at all) for some small number of these parallel computations. Thus, we expect
arbitrarily large errors in the sparse subset of measurements which were dispatched to this faulty
node. Of course, we may not know ahead of time which computations were sent to this node, and

97
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so the support of this error vector is unknown. We will henceforth denote this error as esparse,
giving the total measurement error of the truncated solution as e = ebounded + esparse. For the
remainder of these notes, to simplify our presentation of alternative minimization programs and
recovery bounds, we assume our measurement error in the truncated solution is normalized, that
is e ← 1√

K
e. With this new definition of e, letting ỹ = 1√

K
y and Ã = 1√

K
A be the normalized

samples of u and sampling matrix, e is defined to satisfy

(4.2) e := ỹ− ÃûΛ0 .

4.2. Lower Set Sparsity

In Chapter 2, we truncated our infinitely indexed gPC expansions to sets only of the form
Λ0 = {ν ∈ Λ | 2ω2ν 6 s} in order to maintain generality and ensure that weighted sparse recovery
results hold. In Chapter 3, we found explicit weights in terms of the affine operator and discussed
the resulting truncation index sets. However, in Section 4.3, we will be introducing alternatives
to the constrained `1 minimization routine we have previously considered for reconstruction of
the coefficients from measurements. In order to provide a consistent and better defined setting in
which to compare these methods, we narrow our perspective with regard to truncation as in [1] by
supposing that the support of the gPC coefficients has further structure. For this, we introduce
lower sets, and return to the hyperbolic cross index set.

Definition 4.1. Any index set S ⊆ NN0 is a lower set if it is downward closed, that is, for
all ν ∈ S, and η ∈ NN0 , if η 6 ν, then η ∈ S as well. We define the error in the best s-term
approximation to a vector x in lower sets as

σL,s(x)ω,p = inf
z:‖z‖06s

supp(z) lower

‖x− z‖ω,p.

Note here that the infimum is taken over traditionally sparse vectors rather than weighted
sparse vectors, whereas the norm is still weighted.

Proposition 4.1. Let Λ0 be the hyperbolic cross index set (1.32) indexed at the sparsity
level s, that is

Λ0 = ΛHC(s) =

{
ν ∈ NN0 |

N∏
n=1

(νn + 1) 6 s

}
.

Then
Λ0 =

⋃
|S|6s
S lower

S.

Proof. For any ν ∈ NN0 , we define the rectangular block

Rν := {η ∈ NN0 | η 6 ν}.

Note that Rν is a lower set and

|Rν| =

N∏
n=1

(νn + 1).

Then for any ν ∈ Λ0, we know that |Rν| 6 s, and therefore ν ∈ Rν which is a subset of the union
of lower sets of cardinality bounded by s. Now, if we have any element ν ∈ S where S is a lower
set with |S| 6 s, we must have Rν ⊆ S by the fact that S is lower. Thus, |Rν| 6 |S| 6 s, and so
ν ∈ Λ0 completing the proof. �
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For the remainder of the notes, we will restrict our attention to coefficient vectors indexed on the
hyperbolic cross so as to account for all sparse vectors indexed on lower sets, letting |ΛHC(s)| =M,
and reindexing ΛHC(s) = [M] when convenient. There is strong motivation for the assumption of
lower set sparsity in the context of solving parametric PDE, as the Legendre series for solutions of
problems similar and more extensive (e.g., operators exhibiting nonlinearities in the parameters or
random boundary conditions) to those considered in these notes were shown to have this sparsity in
[10] using arguments similar to those in Chapter 3. We now briefly outline the flow of Chapter 2 in
terms of compressive sensing on the hyperbolic cross to sense vectors with lower set sparsity so as
to be able to link to alternative reconstruction algorithms. Additionally, we will only consider gPC
expansions with Chebyshev and Legendre bases. As such, in the following, our weight sequence
ω will always be taken to be ων = ‖φν‖∞ for φν the ν-tensor product Chebyshev or Legendre
polynomial.

Definition 4.2. The one-dimensional order j (normalized) Legendre polynomial is the jth
orthonormal polynomial basis function calculated from applying Gram-Schmidt orthonor-
malization to the polynomial basis of univariate Taylor monomials {z

j
n}
∞
j=0 with the under

the inner product L2π([−1, 1]) with uniform probability density function πn(zn) = 1
2 . For any

ν ∈ NN0 , the tensorized Legendre polynomial is defined as

φν(Z) =

N∏
n=1

φνn(Zn)

where φνn is the order νn univariate Legendre polynomial.

Proposition 4.2 (Properties of Legendre Polynomials). The tensorized Legendre polyno-
mials are orthonormal with respect to uniform measure on Γ = [−1, 1]N. Additionally, the
tensorized Legendre polynomials have ‖φν‖∞ =

∏N
n=1

√
2νn + 1 with equality attained at

Z = 1, that is φν(1) =
∏N
n=1

√
2νn + 1.

Proof. Any reference on orthogonal polynomials e.g., [7, Appendix, A.4]. �

Definition 4.3 ([1], Definition 5.2). The intrinsic lower sparsity of order s is defined as the
maximum weighted cardinality of lower sets with cardinality bounded by s, that is,

S(s) := max{ω(S) | S ⊆ NN0 , |S| 6 s, S is lower}.

Note that by Proposition 4.1, it suffices to consider just the maximum over subsets of the
hyperbolic cross.

Definition 4.4 ([1], Definition 5.3, cf. Definition 2.1). A matrix A ∈ CK,M is said to satisfy
the lower robust null space property of order s with constants ρ ∈ (0, 1) and τ > 0 if

‖vS‖2 6
ρ√
S(s)
‖vSC‖ω,1 + τ‖Av‖2 for all v ∈ CM with S ⊆ [M] with ω(S) 6 S(s) ,

that is, it satisfies the weighted robust null space property of order S(s).

Corollary 4.1 ([1], Theorem 5.6, cf. Lemma 2.1). If A ∈ CK,M satisfies the lower robust
null space property of order s with constants ρ ∈ (0, 1) and τ > 0, then for all x, z ∈ CM, we
have

(4.3) ‖x− z‖ω,1 6
1+ ρ

1− ρ
(‖z‖ω,1 − ‖x‖ω,1 + 2σL,s(x)ω,1) +

2τ
√
S(s)

1− ρ
‖A(x− z)‖2.
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Proof. Since A satisfies the lower robust null space property of order s, it satisfies the weighted
robust null space property of order S(s). Additionally, we must have σS(s)(x)ω,1 6 σL,s(x)ω,1,
since being lower is a stricter feasibility condition on the index sets considered in these quantities.
An application of Lemma 2.1 finishes the `ω,1 estimate. �

We cannot directly use the `2 bound in Lemma 2.1 as S(s) is not necessarily larger than
2‖ωΛ0‖

2∞. However, we can use the following bounds to prove a similar result. Additionally, this
bound will be able to relate our notion of the weighted restricted isometry property implying the
weighted null space property to lower sets with less stringent requirements on the sparsity.

Lemma 4.1 ([11], Lemma 4.1). For s > 2, for Chebyshev polynomials, the intrinsic sparsity
is bounded below by

(4.4) ST (s) >
3

2
‖ωΛ0‖

2∞,
and for Legendre polynomials, the intrinsic sparsity is bounded below by

(4.5) SL(s) >
4

3
‖ωΛ0‖

2∞.
In particular, for either basis, S(s) − ‖ωΛ0‖

2∞ > 1
4S(s). Additionally, we have the bounds

(4.6) ST (3s) > 3ST (s), SL(2s) > 3SL(s).

Proof. First note that for any weight, since any degree univariate Legendre and Chebyshev
polynomials attain their maximum at the same point, we have ων = ‖φν‖∞ =

∏N
n=1 ‖φνn‖∞.

Now for any index ν ∈ Λ0 \ {0} (since we already know 3
2ω

2
0 = 3

2 6 2 = s 6 S(s) since all weights
are larger than one), we have Rν ⊆ Λ0 and |Rν| 6 s since Λ0 is the degree s hyperbolic cross.
Thus, ST (s) > ω(Rν). We can directly calculate ω(Rν) with Chebyshev weights by the factoring
argument, letting q(ηn) = 2− δηn,0,

ω(Rν) =
∑
η6ν

ω2η

=

ν1∑
η1=0

· · ·
νN∑
ηN=0

2‖η‖0

=

ν1∑
η1=0

· · ·
νN∑
ηN=0

q(η1) · · ·q(ηN)

=

ν1∑
η1=0

q(η1) · · ·
νN∑
ηN=0

q(ηN)

=

N∏
n=1

(1+ 2νn)

>
N∏
n=1

(3− 2δνn,0)

= 3‖ν‖0 .

Thus, we have the bound

ST (s) > 3
‖ν‖0 =

(
3

2

)‖ν‖0
ω2ν >

3

2
ω2ν.
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Since this applies to all ω2ν with ν ∈ Λ0, (4.4) follows.
For Legendre polynomials, the only difference is the choice of q(ηn) = 2νn + 1. The above

argument gives

SL(s) > ω(Rν) =

N∏
n=1

νn∑
ηn=0

(2ηn + 1) =

N∏
n=1

(νn + 1)2

by expanding the sum and simplifying. Additionally, since (νn + 1)2 > 4
3(2νn + 1) for all νn > 1

(which can be checked by expanding and calculating derivatives) and (νn + 1)2 > (2νn + 1) for
νn = 0, we have

SL(s) >

(
4

3

)‖ν0‖ N∏
n=1

(2νn + 1) =

(
4

3

)‖ν‖0
ω2ν >

4

3
ω2ν.

Again this uniform upper bound over Λ0 implies (4.5).
In order to prove (4.6), we start by considering any lower S ⊆ Λ0 with |S| 6 s. Letting any

ν ∈ S be rewritten ν = (ν1, ν̃), we expand S to a lower set S ′ of cardinality 2|S| by defining
S ′ = {(2ν1, ν̃), (2ν1 + 1, ν̃) | ν ∈ S}. This one-to-two mapping of S to S ′ directly gives that
|S ′| = 2|S|. Additionally, if ν ∈ S ′ and η 6 ν, we have that η̃ 6 ν̃. Additionally, ν1 can be written
as either 2ν ′1 or 2ν ′1 + 1 such that (ν ′1, ν̃) ∈ S. Thus, taking η ′1 = bη1/2c, we must have η ′1 6 ν

′
1

and therefore (η ′1, η) ∈ S. Thus, η ∈ S ′, and S ′ is lower.
Now, for Legendre polynomials, consider

ω(S ′) =
∑
ν∈S

√
2(2ν1) + 1

2
ω2ν̃ +

∑
ν∈S

√
2(2ν1 + 1) + 1

2
ω2ν̃ =

∑
ν∈S

4
√
2ν1 + 1

2
ω2ν̃ = 4

∑
ν∈S

ω2ν.

Thus,
SL(2s) > ω(S ′) = 4ω(S) > 3ω(S)

for any S ⊆ Λ with |S| 6 s, giving SL(2s) > 3SL(s).
For Chebyshev polynomials, we repeat the process with the expanded set S ′ = {(3ν1, ν̃), (3ν1+

1, ν̃), (3ν1 + 2, ν̃) | ν ∈ S} so that |S ′| = 3|S|. A similar analysis shows that S ′ is lower and

ω(S ′) =
∑
ν∈S

(ω23ν1 +ω
2
3ν1+1

+ω23ν1+2)ω
2
ν̃ > 3

∑
ν∈S

ω2ν = 3ω(S),

since a univariate Chebyshev polynomial satisfies
∥∥φj∥∥∞ =

√
2 if j 6= 0 and

∥∥φj∥∥∞ = 1 if j = 0.
Thus ST (3s) > 3ST (s). �

Lemma 4.2 ([1], Lemma 5.8). If A ∈ CK,M satisfies the lower robust null space property of
order s,

‖x− z‖2 6
2+ ρ√
S(s)
‖x− z‖ω,1 + τ‖A(x− z)‖2.

Proof. Letting v = x − z, fix S with ω(S) 6 S(s) so that ‖v− vS‖2 = ‖vSC‖2 = σS(s)(v)ω,2.
Then by the lower robust null space property,

‖vS‖2 6
ρ√
S(s)
‖vSC‖ω,1 + τ‖Av‖2 6

ρ√
S(s)
‖v‖ω,1 + τ‖Av‖2.

By the weighted Stechkin estimate, Theorem 1.5, we also have

‖vSC‖2 = σS(s)(v)ω,2 6
1√

S(s) − ‖ωΛ0‖
2∞
‖v‖ω,1 6

2√
S(s)
‖v‖ω,1,

where the second inequality follows from Lemma 4.1. Summing these two bounds gives the desired
inequality. �
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As mentioned previously, the weighted null space property (and therefore, the lower null space
property) is difficult to check for a matrix. Thus, we move up the chain, and define a lower
restricted isometry property which implies the lower null space property.

Definition 4.5 ([1], Definition 5.2, cf. Definition 2.2). For A ∈ CK,M, s > 2, the lower
restricted isometry constant δL,s for A is the smallest number for which

(1− δL,s)‖x‖22 6 ‖Ax‖
2
2 6 (1+ δL,s)‖x‖22

for all x ∈ CM with ‖x‖ω,0 6 S(s). We say that A satisfies the lower restricted isometry
property (lower RIP) if δL,s is sufficiently small. Note that this is equivalent to A satisfying
the weighted restricted isometry property of order S(s).

Theorem 4.1 ([1], Lemma 5.4, cf. Theorem 2.4). Let A ∈ CK,M have lower RIP constant

δL,αs 6
1

5
,

where α = 2 for Legendre intrinsic weights and α = 3 for Chebyshev intrinsic weights. Then
A has the robust lower null space property of order s with constants τ =

√
1+ δL,αs/(1−δL,αs)

and ρ = 4δL,αs/(1− δL,αs).

Proof. It suffices to show that assuming A has the ω-RIP of order S(αs), it has the ω-NSP of
order S(s). First, by (4.6), 3S(s) 6 S(αs), and so δω,3S(s) 6 δω,S(αs) = δL,αs. By Lemma 4.1, we
only have that S(s) > 4

3
‖ωΛ0‖

2∞, so we cannot directly use Theorem 2.4. However, a repetition of
the proof with this bound replaces the factor of two in (2.9) by four. Everything else carries through
with the new NSP constant ρ = 4δω,3S(s)/(1− δω,3S(s)). Replacing δω,3S(s) by δL,αs everywhere
and noting that the resulting ρ is bounded by one when δL,αs 6 1/5 finishes the theorem. �

We now report the necessary number of samples for the sampling matrix to have the lower RIP
with high probability. Due to its complexity, we do not consider the proof.

Theorem 4.2 ([1], Theorem 5.5, cf. Theorem 2.8). Fix δ, γ ∈ (0, 1), and let (φν)ν∈Λ0 be the
tensorized Chebyshev or Legendre basis on the hyperbolic cross index set. Take the intrinsic
weight sequence ων = ‖φν‖∞ and

K & S(s)L(s,M, δ, γ)

i.i.d. sampling points {Z(k)}Kk=1 drawn from the orthogonalization measure π of the basis,
where L(s,M, δ, γ) is the polylogarithmic factor

(4.7) L =
1

δ2
log
(
S(s)

δ2

)
max

{
1

δ4
log
(
S(s)

δ2
log
(
S(s)

δ2

))
log(M),

1

δ
log
(
1

δγ
log
(
S(s)

δ2

))}
.

With probability exceeding 1 − γ, the normalized sampling matrix Ã ∈ CK,M with entries
Ãk,ν = 1√

K
φν(Z

(k)) has lower RIP constant of order s satisfying δL,s 6 δ.

We finish this section with some asymptotically tight bounds on the intrinsic sparsities as-
sociated to intrinsic Chebyshev and Legendre weights which will be useful in providing better
quantitative bounds on the number of measurements as well as recovery estimates.

Lemma 4.3 ([1], Lemma 2.2). Let 2 6 s 6 2N+1. We have

sκ/4 6 S(s) 6 sκ,



Comprehensive Exam Notes Alternative Reconstruction Methods ‖ 103

where

(4.8) κ =
log(3)
log(2)

, κ = 2

for Chebyshev and Legendre weights respectively. The upper bound holds for all s > 2.

Proof. We prove the upper bound following the argument in [9, Lemma 3.1]. We begin with
Legendre weights. It suffices to prove the upper bound

ω(S) 6 |S|2 6 s2

for all lower S with |S| 6 s. We proceed by induction on s. When s = 1, the bound is trivially true
since the lower set S must equal {0}, and for Legendre polynomials, ω20 = 1. Now supposing the
bound is true for all lower S ′ with |S ′| 6 s, we consider S lower with |S| = s + 1. Since |S| > 1, we
know that there must be some nonzero multiindex in S. We assume without loss of generality that
there is some ν ∈ S with ν1 6= 0. Now, we define 0 < K = maxν∈S ν1 6 |S|, and we decompose S
into its slices in ν1, that is, we write

(4.9) S =

K⊔
ν1=0

{(ν1, ν̃) | (ν1, ν̃) ∈ S}.

We shift each slice down to zero in the first dimension, and analyze these slices, defining

Sν1 = {(0, ν̃) | (ν1, ν̃) ∈ S}.

By shifting down to zero, we ensure that Sν1 is a lower set. Additionally, |Sν1 | < |S| by (4.9) and
the fact that K > 0. And finally, since S is lower, each of the slices must be contained in the slice
one lower, that is, Sν1 ⊆ Sν1−1 and therefore |Sν1 | 6 |Sν1−1|. We now rewrite

(4.10) ω(S) =

K∑
ν1=0

∑
ν̃:(ν1,ν̃)∈S

ω2ν1ω
2
ν̃ =

K∑
ν1=0

(2ν1 + 1)ω(Sν1)
2 6

K∑
ν1=0

(2ν1 + 1)|Sν1 |
2,

where the last inequality is by the inductive hypothesis. By the fact that

ν1|Sν1 | =

ν1−1∑
j=0

|Sν1 | 6
ν1−1∑
j=0

|Sj|

by the downwards nestedness of the Sν1 , we have

ω(S) 6
K∑

ν1=0

|Sν1 |
2 + 2

K∑
ν1=1

ν1−1∑
j=0

|Sν1 ||Sj|

=

K∑
ν1=0

∑
j=ν1

|Sν1 ||Sj|+

K∑
ν1=1

ν1−1∑
j=0

|Sν1 ||Sj|+

K∑
ν1=0

K∑
j=ν1+1

|Sν1 ||Sj|

=

K∑
ν1=0

K∑
j=0

|Sν1 ||Sj|

=

 K∑
ν1=0

|Sν1 |

2 .
Since |Sν1 | is the same cardinality as the slices in (4.9), we know that

∑K
ν1

|Sν1 | = |S|, and so
ω(S) 6 |S|2 as desired.
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For Chebyshev weights, we again define q(ν1) = 2−δν1,0 so that ω2ν = ‖φν‖2∞ =
∏N
n=1 q(νn).

The same analysis holds (with the modified inductive hypothesis) up until (4.10), where we obtain

ω(S) 6
K∑

ν1=0

q(ν1)ω(Sν1)
2

6
K∑

ν1=0

q(ν1)|Sν1 |
log(3)/ log(2)

= |S0|
log(3)/ log(2) + 2

K∑
ν1=1

|Sν1 |
log(3)/ log(2).

We now prove the claim [9, Proposition 3.2], that for any a0 > a1 > . . . > aK and any
α > log(3)/ log(2), we have

aα0 + 2(aα1 + . . .+ aαK) 6 (a0 + . . .+ aK)
α,

which finishes the proof of the upper bound. Indeed, we proceed inductively on K with the case
K = 0 holding trivially. The trickiest case is showing that it is true for K = 1, that is, showing that

aα0 + 2aα1 6 (a0 + a1)
α.

The insight comes from rearranging, where we instead try and show

2aα1 6 (a0 + a1)
α − aα0 ,

and treating the right hand size like a function of a0. Taking derivatives shows that this function
is increasing in a0. Attempting relate back to 2aα1 , we plug in a1 to find

(a1 + a1)
α − aα1 6 (a0 + a1)

α − aα0 .

Now the left hand side gives (2α − 1)aα1 , which is exactly greater than 2aα1 when 2α > 3, that is,
α > log(3)/ log(2). Now assuming the bound holds for values less than some arbitrary K, we find

(a0 + . . .+ aK)
α > (a0 + . . .+ aK−1)

α + 2aαK

> aα0 + 2(aα1 + . . .+ aαK−1) + 2a
α
K

= aα0 + 2(aα1 + . . .+ aαK),

completing the proof of the claim.
For the lower bounds we proceed as in [11, Lemma 3.6]. In the proof of Lemma 4.1, our factoring

argument showed that for any ν ∈ Λ0,

ω(Rν) =

N∏
n=1

(1+ 2νn), ω(Rν) =

N∏
n=1

(νn + 1)2

for Chebyshev and Legendre weights respectively. If s 6 2N+1, we can fit s in a dyadic interval
2N

′
6 s 6 2N

′+1 with N ′ 6 N, and choose the multiindex ν = e1 + . . . + e
′
N which has |R(ν)| =

2N
′
6 s. Thus, for Chebyshev weights

ST (s) > ω(Rν) = 3
N ′ = 2N

′ log(3)/ log(2) >
(s
2

)log(3)/ log(2)
=
slog(3)/ log(2)

3
>
sκ

4
.

For Legendre weights,

SL(s) > ω(Rν) = 2
2N ′ >

(s
2

)2
=
sκ

4
,

as desired. �
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4.3. Overview of Alternative Minimization Algorithms

We now outline some alternatives to the weighted `1 minimization problem constrained by
bounds on the truncation, discretization, or corruption error as considered in [1]. In the following,
η > 0 and λ > 0 are tuning parameters which are not directly determined by the problem. To
simplify the recovery bounds and minimization program, we account for normalization in our
samples, that is we let Ã ∈ CK,M be the normalized sampling matrix Ãk,ν = 1√

K
φν(Z

(k)) and ỹ

be the normalized samples of u, ỹk = 1√
K
u(Z(k)).

Weighted Quadratically-Constrained Basis Pursuit (WQCBP):

(4.11) û] = arg min
z∈CM

‖z‖ω,1 such that
∥∥Ãz− ỹ∥∥

2
6 η.

This algorithm is the same as constrained weighted `1 minimization. However, note that
η > 0 is chosen to be arbitrary rather than determined by the errors. Thus, we expect
bounds to depend on the decoupled η and ‖e‖2.

Weighted LASSO (WLASSO):

(4.12) û] = arg min
z∈CM

‖z‖ω,1 + λ
∥∥Ãz− ỹ∥∥2

2
.

WLASSO removes the constraint in WQCBP by instead using it as a penalty term.
Weighted Square-Root LASSO (WSR-LASSO):

(4.13) û] = arg min
z∈CM

‖z‖ω,1 + λ
∥∥Ãz− ỹ∥∥

2
.

The only difference here from WLASSO is that the penalty term is the standard `2-norm
(which may result in more difficult theoretical analysis) rather than its square.

Weighted LAD-LASSO (WLAD-LASSO):

(4.14) û] = arg min
z∈CM

‖z‖ω,1 + λ
∥∥Ãz− ỹ∥∥

1
.

Here, the penalty is considered in the `1-norm. Since basis pursuit has been shown to be
effective for sparse recovery, we anticipate that this method will be oriented towards the
sparse error case.

4.4. Analysis of Alternative Minimization Algorithms

We now show that the algorithms in Section 4.4 provide accurate reconstructions of our solution
u assuming the tools from Section 4.2. These proofs will take the form of the proof of Theorem 2.2,
however, since we are not using basis pursuit constrained by the error for reconstruction, the
recovery bounds for weighted `1 minimization given the ω-NSP in Theorem 2.3 do not apply. We
will instead refine the proof of this theorem in the case of each of the recovery algorithms, with
Corollary 4.1 taking the place of Lemma 2.1.

4.4.1. Weighted Quadratically-Constrained Basis Pursuit.

Theorem 4.3 ([1], Theorem 5.10). Let 0 < γ < 1, 0 < δ 6 1/5, 2 6 s 6 2N+1, and
Λ0 = ΛHC(s) with {φν}ν∈Λ0 tensor Legendre or Chebyshev polynomial bases. If we draw

K & sκL(s, n, δ, γ),

i.i.d. measurements {Z(k)}Kk=1 from the orthogonalization measure π dz for κ as in (4.8) and
L as in (4.7), then with probability 1−γ, the following holds. For any η > 0, letting û] be the
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solution of the WQCBP problem (4.11), defining u] =
∑
ν∈Λ0 û

]
νφν,∥∥u− u]

∥∥∞ . σL,s(u)ω,1 + sκ/2 (η+ ‖e‖2 + T)∥∥u− u]
∥∥
2
. s−κ/2σL,s(u)ω,1 + η+ ‖e‖2 + T + ‖uΛR‖2,

where

T = T(A,Λ0, e,ω, η) := min
{
‖z‖ω,1
sκ/2

| z ∈ CM,
∥∥Ãz− e∥∥

2
6 η

}
,

and all implicit constants depend on δ.

Proof. For the assumed number of samples, by our upper bounds on intrinsic sparsity in
Lemma 4.1, we know that the measurements satisfy the criterion for Ã to have lower RIP constant
bounded by δ with probability at least 1− γ by Theorem 4.2. Since δ 6 1/5 the lower NSP holds
by Theorem 4.1, and therefore the distance bound (4.3) from Corollary 4.1 holds.

In this distance bound, we let x = ûΛ0 and z = û] and work with three separate pieces. For
the first, we note

σL,s(ûΛ0)ω,1 = σL,s(u)ω,1,

since minimizing over cardinality s lower sets is equivalent to minimizing over cardinality s lower
sets contained in the hyperbolic cross by Proposition 4.1. For the second, we find√

S(s)
∥∥Ã(ûΛ0 − û])∥∥2 6 sκ/2 (‖e‖2 + ∥∥ỹ− Ãû]

∥∥
2

)
6 sκ/2 (‖e‖2 + η) ,

by the upper bounds on intrinsic sparsity in Lemma 4.3 and the fact that û] is in the feasible set of
the optimization problem defined by the constraint

∥∥ỹ− Ãz
∥∥
2
6 η. Finally, we are left to bound∥∥û]∥∥

ω,1
− ‖ûΛ0‖ω,1.

But by the fact that û] solves (4.11), we may consider ‖ûΛ0‖ω,1 subtracted from the objective
function without changing the minimum. By the reverse triangle inequality, we may rewrite∥∥û]∥∥

ω,1
− ‖ûΛ0‖ω,1 6 min{‖z− ûΛ0‖ω,1 | z ∈ CM

∥∥Ãz− ỹ∥∥
2
6 η}

= min{‖z‖ω,1 | z ∈ CM
∥∥Ãz− e∥∥

2
6 η}

= sκ/2T.

Using our trick of bounding the infinity norm of gPC expansions by weighted `1 norms, we have

(4.15)

∥∥u− u]
∥∥∞ 6 ∥∥û− û]

∥∥
ω,1

=
∥∥ûΛ0 − û]∥∥ω,1 + ‖ûΛR‖ω,1

. σL,s(ûΛ0)ω,1 +
∥∥û]∥∥

ω,1
− ‖ûΛ0‖ω,1 +

√
S(s)

∥∥Ã(ûΛ0 − û])∥∥2 + ‖uΛR‖ω,1
6 σL,s(u)ω,1 + s

κ/2 (T + ‖e‖2 + η) + ‖uΛR‖ω,1.

Noting that the best lower set approximation to u of cardinality s must be contained within the
hyperbolic cross, we know that ‖uΛR‖ω,1 6 σL,s(u)ω,1 finishing the L∞ bound.

For the L2 bound, we use Lemma 4.2 and Parseval’s identity giving∥∥u− u]
∥∥
2
6
∥∥uΛ0 − u]∥∥2 + ‖uΛR‖2 . s

−κ/2
∥∥ûΛ0 − û]∥∥ω,1 + ∥∥Ã(ûΛ0 − û])∥∥2 + ‖uΛR‖2.

The inequalities used to prove the L∞ bound in (4.15) then give∥∥u− u]
∥∥
2
6 s−κ/2σL,s(u)ω,1 + ‖e‖2 + η+ T + ‖uΛR‖2,

as desired. �
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We now provide a bound for T in terms of properties of the sampling matrix, the parameters
involved, and the relationship between the true error and our “proxy error” in η.

Theorem 4.4 ([1], Theorem 5.11). For K � sκL as in Theorem 4.3, the bound for the
constant

T .
sα/2

√
L

σK

(√
K
MÃ

∗
) max{‖e‖2 − η, 0}

holds, where α = 1 or α = 2 for Chebyshev and Legendre weights respectively.

Proof. An upper bound for T follows by bounding s−κ/2‖z‖ω,1 for some feasible z ∈ CM

satisfying
∥∥Ãz− e∥∥

2
6 η. If we first consider the case where Ã is full rank, we can make use of

the pseudoinverse Ã† = Ã∗(ÃÃ∗)−1. Choosing z = Ã†
(
1− η

‖e‖2

)
e ensures that

∥∥Ãz− e∥∥
2
= η.

Assuming that our number of measurements K is asymptotically equal to sκL, we can bound
s−κ/2 .

√
L√
K
. Thus, T .

√
L√
K
‖z‖ω,1 for our choice of z. Instead of directly working with the

weighted `1 norm, we use Cauchy-Schwarz to bound

‖z‖ω,1 6
√∑
ν∈Λ0

ω2ν‖z‖2 6
√
ω(Λ0)

∥∥∥Ã†∥∥∥|‖e‖2 − η|.
We can bound the operator norm of the pseudoinverse by a singular value decomposition of Ã∗ =
UΣV∗, a giving

Ã† = UΣV∗ (VΣ∗U∗UΣV∗)−1 = UΣ−1V∗,

where if Σ = diag(σk(Ã∗))Kk=1, the largest diagonal element of Σ−1 and therefore the largest
singular value and operator norm of Ã† is σK(Ã∗)−1.

It remains to bound ω(Λ0) which we will do in terms of the size of the hyperbolic cross
|Λ0| =M. For Chebyshev polynomials,

ω(Λ0) =
∑
ν∈Λ0

2‖ν‖0 6
∑
ν∈Λ0

N∏
n=1

(νn + 1) 6
∑
ν∈Λ0

s =Ms,

where we use that
∏N
n=1(νn + 1) 6 s for all ν ∈ Λ0 by the definition of the hyperbolic cross. For

Legendre polynomials,

ω(Λ0) =
∑
ν∈Λ0

N∏
n=1

(2νn + 1) 6
∑
ν∈Λ0

N∏
n=1

(νn + 1)2 6
∑
ν∈Λ0

s2 =Ms2.

Thus,
√
ω(Λ0) 6

√
Msα/2 with α = 1 or α = 2 for Chebyshev and Legendre weights respectively.

Putting it all together, we find

T .

√
L√
K

√
Msα/2σK(Ã

∗)−1|‖e‖2 − η| =
sα/2

√
L

σK

(√
K
MÃ

∗
) |‖e‖2 − η|

But of course, when ‖e‖2 6 η, the trivial choice of z = 0 satisfies
∥∥Ãz− e∥∥

2
6 η, and so T = 0.

Additionally, when Ã is not full rank, σK(Ã∗) = 0, and the same bound holds from the full rank
case making the definition 1/0 =∞ (though this bound is obviously not very informative; however,
the rank zero case is probabilistically rare, see Lemma 4.4 below). Thus, we can say that in general,

T .
sα/2

√
L

σK

(√
K
MÃ

∗
) max{‖e‖2 − η, 0}.
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�

Thus, recovery bounds act as in the case where the constraint is determined by the error with
an added term depending on how close η is chosen to ‖e‖2 with a factor depending polynomially on
the sparsity, the polylogarithmic factor in the number of measurements, and the smallest singular

value of
√
K
MÃ

∗. For N = 1, it can be shown that this singular value stays bounded away from
zero with high probability [8]. In the following lemma, we show at least that the smallest singular
value of the expectation of the sampling matrix has a nice closed form which heuristically supports
this assertion.

Lemma 4.4 ([3], Lemma 3). For a gPC basis,

σK

(√
K

M
EÃ∗

)
=

√
1−

1

M
.

Proof. We determine λmin(
K
MEÃÃ∗) and the equality for the singular value results by taking

square roots. Calculating the entries of the mean matrix(
E
[
K

M
ÃÃ∗

])
k,j

=
1

M

∑
ν∈Λ0

Eφν(Z(k))φν(Z(j)) =

{
1, if k = j
1
M if k 6= j

where the latter case holds by noting that Eφν = Eφνφ0 = δν,0. This circulant matrix is diago-
nalized by the discrete Fourier transform matrix which provides the closed form for the eigenvalues

λk = 1+
1

M

K−1∑
j=1

exp
(
i
2πjk

K

)
, k = 1, . . . K.

When k = K, λK = 1 + 1
M(K − 1). When k 6= K, a standard geometric series allows us to evaluate

the sum to be −1. Thus, λk = 1 − 1
M for all k 6= K, and therefore λmin(E KMÃÃ

∗) = 1 − 1
M as

desired. �

4.4.2. Weighted LASSO. The results for WLASSO are similar under a certain class of parameter
values λ. However, the parameter value still depends on the actual value of the error.

Theorem 4.5 ([1], Theorem 5.13). Let 0 < γ < 1, 0 < δ 6 1/5, 2 6 s 6 2N+1, and
Λ0 = ΛHC(s) with {φν}ν∈Λ0 tensor Legendre or Chebyshev polynomial bases. If we draw

K & sκL(s, n, δ, γ)

i.i.d. measurements {Z(k)}Kk=1 from the orthogonalization measure π dz for κ as in (4.8) and
L as in (4.7), then with probability 1− γ, the following holds. For any

λ = θ

√
S(s)

‖e‖2
, θ > 0,

letting û] be the solution of the WLASSO problem (4.12), defining u] =
∑
ν∈Λ0 û

]
νφν,∥∥u− u]

∥∥∞ . σL,s(u)ω,1 + sκ/2‖e‖2∥∥u− u]
∥∥
2
. s−κ/2σL,s(u)ω,1 + ‖e‖2 + ‖uΛR‖2,

where all implicit constants depend on δ and θ.
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Proof. As in the proof of the recovery results for WQCBP, we know that the distance bound
(4.3) holds with probability exceeding 1− γ. As before then,

(4.16)
∥∥u− u]

∥∥∞ . σL,s(u)ω,1 + ∥∥û]∥∥ω,1 − ‖ûΛ0‖ω,1 +√S(s)
∥∥Ã(ûΛ0 − û])∥∥2.

A more appropriate accounting of the last term by inserting ỹ and applying the triangle inequality
gives ∥∥Ã(ûΛ0 − û])∥∥2 6 ‖e‖2 + ∥∥ỹ− Ãû]

∥∥
2
.

Now, we rewrite the solution to the WLASSO minimization problem as the constrained problem

(4.17) (û], e]) = arg min
(z,d)∈CM×CK

‖z‖ω,1 + λ‖d‖
2
2 such that Ãz+ d = ỹ,

which then gives

(4.18)
√
S(s)

∥∥Ã(ûΛ0 − û])∥∥2 6√S(s)‖e‖2 +
√

S(s)
∥∥e]∥∥

2
.

We will want to use the fact that û] and e] solve (4.17) to get (4.16) in terms of only the error
and the error in the best lower s-sparse estimate, and so we attempt to write (4.16) in terms of the
objective function applied to this minimizer.

In light of this approach, we try to separate
√
S(s) from

∥∥e]∥∥
2
in (4.18) while introducing λ.

Cauchy’s inequality with constants does the job, with

(4.19)
√

S(s)
∥∥e]∥∥

2
= 2

√
S(s)

2
√
λ

√
λ
∥∥e]∥∥

2
6

S(s)

4λ
+ λ
∥∥e]∥∥2

2
.

Thus ∥∥u− u]
∥∥∞ . σL,s(u)ω,1 + (∥∥û]∥∥ω,1 + λ∥∥e]∥∥22)− ‖ûΛ0‖ω,1 + λ−1S(s) +√S(s)‖e‖2

. σL,s(u)ω,1 + λ‖e‖22 + λ
−1S(s) +

√
S(s)‖e‖2.

Choosing λ ∝
√

S(s)

‖e‖ followed by the upper bounds on intrinsic sparsity in Lemma 4.3 give the
desired L∞ bound.

For the L2 bound, making use of Lemma 4.2, as in WQCBP case and (4.19),∥∥u− u]
∥∥
2
.

1√
S(s)

σL,s(u)ω,1 +
1√
S(s)

(∥∥û]∥∥
ω,1

− ‖ûΛ0‖ω,1
)
+
∥∥Ã(ûΛ0 − û])∥∥2 + ‖uΛR‖2

.
1√
S(s)

σL,s(u)ω,1 +
1√
S(s)

(∥∥û]∥∥
ω,1

− ‖ûΛ0‖ω,1
)
+ ‖e‖2 +

√
S(s)

∥∥e]∥∥
2√

S(s)
+ ‖uΛR‖2

.
1√
S(s)

σL,s(u)ω,1 +
1√
S(s)

(∥∥û]∥∥
ω,1

+ λ
∥∥e]∥∥2

2
− ‖ûΛ0‖ω,1

)
+ λ−1

√
S(s) + ‖uΛR‖2

. s−λ/2σL,s(u)ω,1 + ‖e‖2 + ‖uΛR‖2,

as desired. �

4.4.3. Weighted Square-root LASSO. The proof for WSR-LASSO proceeds much the same as
WLASSO with the exception of the requirements for λ. Here, we note no dependence necessary on
the measurement error in order to have similar recovery results to the previous cases. This lack of
dependence on e in choosing λ is the main benefit of the WSR-LASSO methods over the previous
two considered when attempting to reconstruct from measurements with completely unknown error.
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Theorem 4.6 ([1], Theorem 5.14). Let 0 < γ < 1, 0 < δ 6 1/5, 2 6 s 6 2N+1, and
Λ0 = ΛHC(s) with {φν}ν∈Λ0 tensor Legendre or Chebyshev polynomial bases. If we draw

K & sκL(s, n, δ, γ),

i.i.d. measurements {Z(k)}Kk=1 from the orthogonalization measure π dz for κ as in (4.8) and
L as in (4.7), then with probability 1− γ, the following holds. For any

λ = θ
√

S(s), θ >
(5+ ρ)τ

(1+ ρ)(2+ ρ)
= max

{
(5+ ρ)τ

(1+ ρ)(2+ ρ)
,
2τ

1+ ρ

}
,

(where ρ < 1 and τ are the constants in the lower NSP depending on δ), letting û] be the
solution of the WSR-LASSO problem (4.13), defining u] =

∑
ν∈Λ0 û

]
νφν,∥∥u− u]

∥∥∞ . σL,s(u)ω,1 + sκ/2‖e‖2∥∥u− u]
∥∥
2
. s−κ/2σL,s(u)ω,1 + ‖e‖2 + ‖uΛR‖2,

where all implicit constants depend on δ and θ.

Proof. We now rewrite the WSR-LASSO minimization as the constrained problem

(û], e]) = arg min
(z,d)∈CM×CK

‖z‖ω,1 + λ‖d‖2 such that Ãz+ d = ỹ.

In order to choose λ properly we more carefully consider the `1 error bound implied by the lower
NSP (4.3) and split Ã(ûΛ0 − û

]) as in the previous proof, giving

∥∥ûΛ0 − û]∥∥ω,1 6 CσL,s(u)ω,1 + 1+ ρ

1− ρ

(∥∥û]∥∥
ω,1

− ‖ûΛ0‖ω,1
)
+
2τ
√
S(s)

1− ρ

∥∥e]∥∥
2
+ C

√
S(s)‖e‖2

6 CσL,s(u)ω,1 +
1+ ρ

1− ρ

(∥∥û]∥∥
ω,1

+ λ
∥∥e]∥∥

2
− ‖ûΛ0‖ω,1

)
+ C

√
S(s)‖e‖2

. σL,s(u)ω,1 + s
−κ/2‖e‖2,

where the second inequality follows from the fact that λ > 2τ
√

S(s)

1+ρ . Thus, the same bound holds
(with a slightly different constant after accounting for the truncation) for

∥∥u− u]
∥∥∞.

For the L2 case, Lemma 4.2 gives∥∥ûΛ0 − û]∥∥2
6

C√
S(s)

σL,s(u)σ,1 +
(1+ ρ)(2+ ρ)

(1− ρ)
√
S(s)

(∥∥û]∥∥
ω,1

− ‖ûΛ0‖ω,1
)
+

(5+ ρ)τ

1− ρ

∥∥e]∥∥
2
+ C‖e‖2

6
C√
S(s)

σL,s(u)σ,1 +
(1+ ρ)(2+ ρ)

(1− ρ)
√
S(s)

(∥∥û]∥∥
ω,1

+ λ
∥∥e]∥∥

2
− ‖ûΛ0‖ω,1

)
+ C‖e‖2

. s−κ/2σL,s(u)σ,1 + ‖e‖2,

where again, the second inequality is due to the fact that

λ >
(5+ ρ)τ

√
S(s)

(1+ ρ)(2+ ρ)
.

After combining with Parseval’s identity on
∥∥u− u]

∥∥
2
6
∥∥uΛ0 − u]∥∥2 + ‖uΛR‖2, we recover the

L2 bound. �
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4.4.4. Weighted LAD-LASSO. Since the `2 norm of the error bounds the error in approximating
the solution using the previous three algorithms, these three algorithms should work well with
e = ebounded, that is, pervasive, but small errors in each measurement. However, for e = ebounded+
esparse, where ‖esparse‖2 is potentially large, these recovery bounds are not informative. Thus, we
introduce the WLAD-LASSO method to perform basis pursuit on both the sparse sequence of
coefficients of the original function, as well as on the (potentially) sparse error.

In this chapter, we have made extensive use of the standard compressed sensing workflow of
showing that with high probability the sampling matrix has the lower RIP which implies the lower
NSP which shows a weighted `1 bound (and associated `2 bound) in the distance between two
vectors. These distance bounds are responsible for showing that weighted basis pursuit (in some
sense) then gives acceptable error bounds. Now that we will be performing weighted basis pursuit
in both the coefficient sequence and the error, we will need to introduce these same compressive
sensing notions working on two vectors disjointly but simultaneously.

Definition 4.6 ([1], Definition 5.15). Let M,m ∈ N+, and let x ∈ CM+m with weight
sequence ω ∈ RM+m partitioned as

x =

[
x1
x2

]
, ω =

[
ω1
ω2

]
,

with x1 ∈ CM, x2 ∈ Cm, ω1 ∈ RM, and ω2 ∈ Rm. Given a sparsity pair s = (s1, s2) ∈ R2, we
say that x is weighted s-sparse if ‖xi‖ωi,0 6 si for i = 1, 2.

Definition 4.7 ([1], Definition 5.16). Let λ > 0 be a scale, and for ω ∈ CM+m partitioned
as above, s ∈ R2, we define the scaled weights ωλ and scaled sparsity sλ as

ωλ =

[
ω1
λω2

]
, sλ = s1 + λ

2s2.

The `ωλ,1 error in the weighted best s-term approximation to x is

σs(x)ωλ,1 := inf
z:‖xi‖ωi,06si

‖x− z‖ωλ,1.

Remark 4.1. The notion of scaled sparsity allows us to switch between two- and standard
one-level scaled sparsity. As an example, for a sparsity pair s, if x is weighted s-sparse, then
we can use our standard Cauchy-Schwarz argument on the weighted `1 norm summed only
over the support to show that

(4.20)

‖x‖ωλ,1 =
∑

ν∈supp(x)

ωλ,ν|xν|

6
√ ∑
ν∈supp(x)

ω2λ,ν‖x‖2

6
√ ∑
ν∈supp(x1)

ω21,ν +
∑

ν∈supp(x2)

λ2ω22,ν‖x‖2

6
√
s1 + λ2s2‖x‖2

=
√
sλ‖x‖2.

Definition 4.8 ([1], Definition 5.15, cf. Definition 2.1). For a 2-level weight sequence ω, a
matrix B ∈ CK,M+m is said to satisfy the 2-level weighted robust null space property of scale
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λ > 0 and order s = (s1, s2) with constants ρ ∈ (0, 1) and τ > 0 if

‖vS1∪S2‖2 6
ρ
√
sλ

∥∥∥v(S1∪S2)C∥∥∥ωλ,1 + τ‖Bv‖2
for all v ∈ CM+m and all S1 ⊆ [M], S2 ⊆M+ [m] with ω1(S1) 6 s1 and ω2(S2) 6 s2.

Lemma 4.5 ([1], Theorem 5.18, cf. Lemma 2.1). If B ∈ CK,M+m satisfies the 2-level weighted
robust null space property of scale λ > 0 and order s = (s1, s2) with constants ρ ∈ (0, 1) and
τ > 0, then for all x, z ∈ CM+m, we have

(4.21) ‖x− z‖ωλ,1 6
1+ ρ

1− ρ

(
‖z‖ωλ,1 − ‖x‖ωλ,1 + 2σs(x)ωλ,1

)
+
2τ
√
sλ

1− ρ
‖B(x− z)‖2,

and given B(x− z) = 0, ‖ω1‖2∞ 6 3
4s1, and ‖ω2‖

2∞ 6 1
2s2, we have

(4.22) ‖x− z‖2 6 C1
1+
√
Θ

√
sλ

(
‖z‖ωλ,1 − ‖x‖ωλ,1 + 2σs(x)ωλ,1

)
,

with C1 =
max{2

√
ρ,ρ}(1+ρ)
1−ρ and Θ =

√
sλ

min{
√
s1,λ
√
s2}

.

Proof. The proof of (4.21) is exactly the same as the weighted `1 part of the 1-level Lemma 2.1
where we use (4.20) to make use of the 2-level weighted NSP.

In order to prove (4.22), we would like to mimic the proof in Lemma 2.1. However, when Bv = 0,
we can use a small adjustment to the proof of the weighted Stechkin estimate, Theorem 1.5 (at the
sacrifice of some generality) and the 2-level NSP to provide a tighter bound. We first show that
for any vector y and weight sequence ξ with ‖ξ‖∞ < s, letting yS realize the quasi-best s-term
approximation to y (recall Definition 1.8), we have

(4.23) σ̃s(y)
2
ξ,2 = ‖ySC‖

2
ξ,2 6

1√
s− ‖ξ‖2∞

‖yS‖2‖ySC‖ξ,1.

Following the proof of Theorem 1.5, we have

‖ySC‖
2
ξ,2 =

∑
ν/∈S

|yν|
2

6 sup
ν/∈S

|yν|ξ
−1
ν

∑
ν/∈S

|yν|ξν

= sup
ν/∈S

|yν|ξ
−1
ν ‖ySC‖ξ,1.

The improvement comes from taking a square root from the first term before introducing the
weighted cardinality of S. Indeed,√

sup
ν/∈S

|yν|2ξ
−2
ν =

√√√√ 1

ξ(S)

∑
η∈S

ξ2η sup
ν/∈S

|yν|2ξ
−2
ν

6
1√
ξ(S)

√∑
η∈S

|yη|2

=
1√
ξ(S)
‖yS‖2

by the fact that S contains the largest elements of the sequence of |yν|2|ξν|−2. The lower bound
s− ‖ξ‖2∞ 6 ξ(S) holds due to the fact that S was chosen to be the largest index set with ξ(S) 6 s
as in the original proof, giving (4.23).
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Returning to the 2-level setup, define v = x − z. Letting S1 with ω1(S1) 6 s1 and S2 with
ω2(S2) 6 s2 realize the quasi-best s1- and s2-term approximations to v1 and v2 respectively, we
have

(4.24) ‖v‖2 6 ‖vS1∪S2‖2 +
∥∥∥v(S1∪S2)C∥∥∥2.

Twice using (4.23) on the square of the second term, as well as the assumptions that ‖ω1‖2∞ 6 3s1/4
and ‖ω1‖2∞ 6 s2/2 followed by the 2-level NSP gives∥∥∥v(S1∪S2)C∥∥∥22 = ∥∥∥(v1)SC1 ∥∥∥22 + ∥∥∥(v2)SC2 ∥∥∥22

6
2
√
s1
‖(v1)S1‖2

∥∥∥(v1)SC1 ∥∥∥ω1,1 +
√
2

√
s2
‖(v2)S2‖2

∥∥∥(v2)SC2 ∥∥∥ω2,1
6
2
∥∥∥v(S1∪S2)C∥∥∥ωλ,1
min
{√
s1, λ
√
s2
} (‖(v1)S1‖2 + ‖(v2)S2‖2)

6
2
√
2
∥∥∥v(S1∪S2)C∥∥∥ωλ,1

min
{√
s1, λ
√
s2
} ‖vS1∪S2‖2

6
2
√
2

min
{√
s1, λ
√
s2
}√

sλ

∥∥∥v(S1∪S2)C∥∥∥2ωλ,1,
where we have also used that Bv = 0. Combining this bound with the 2-level NSP applied to the
first part of (4.24) and defining the parameter Θ :=

√
sλ/min

{√
s1, λ
√
s2
}
, we obtain

‖v‖2 6
2
√
ρ
√
Θ+ ρ

√
sλ

∥∥∥v(S1∪S2)C∥∥∥ωλ,1
6

max
{
2
√
ρ, ρ
}
(1+

√
Θ)

√
sλ

‖v‖ωλ,1.

Applying (4.21) finally gives

‖x− z‖2 6 C1
1+
√
Θ

√
sλ

(
‖z‖ωλ,1 − ‖x‖ωλ,1 + 2σs(x)ωλ,1

)
,

with C1 =
max{2

√
ρ,ρ}(1+ρ)
1−ρ , as desired.

�

Definition 4.9 ([1], Definition 5.19, cf. Definition 2.2). For B ∈ CK,M+m, a sparsity pair
s = (s1, s2), and a 2-level weight sequence ω, the 2-level ω-RIP constant δω,s for A is the
smallest number for which

(1− δω,s)‖x‖22 6 ‖Bx‖
2
2 6 (1+ δω,s)‖x‖22

for all x ∈ CM+m with ‖xi‖ωi,0 6 si for i = 1, 2. We say that B satisfies the 2-level weighted
restricted isometry property if δω,s is sufficiently small.

Theorem 4.7 ([1], Theorem 5.21, cf. Theorem 2.4). Let B ∈ CK,M+m have 2-level ω-RIP
constant

δω,3s <
1

1+ 4Θ
, Θ :=

√
sλ

min
{√
s1, λ
√
s2
}
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(where Θ is as in Lemma 4.5) for 3
4s1 > ‖ω1‖

2∞ and 1
2s2 > ‖ω2‖

2∞. Then B has the 2-level
weighted robust null space property of scale λ and order s with constants

ρ =
4δω,3sΘ

1− δω,3s
, τ =

√
1+ δω,3s
1− δω,3s

.

Proof. The proof is again a repetition of the proof of Theorem 2.4, where we work over both
levels simultaneously. We work out the details to clarify the introduction of Θ.

We first take some v ∈ CM+m decomposed as v = [x; e] and fix index sets S ⊆ [M], T ⊇M+[m]

with ω1(S) 6 s1 and ω2(T) 6 s2 In the vein of the proof of Theorem 2.4, we derive an `2 bound of
v restricted to S∪ T in terms of the weighted `1 norm by way of the non-increasing rearrangements
of the sequences |xν|ω

−1
1,ν and |eν|ω

−1
2,ν respectively. We partition SC and TC reordered into the

indices of these rearrangements into blocks S1, S2, . . . and T1, T2, . . . respectively, where all blocks
(except possibly the first) are assumed to be largest possible satisfying s1− ‖ω1‖2∞ 6 ω1(S`) 6 s1
and s2−‖ω2‖2∞ 6 ω2(T`) 6 s2. Under this setup, the same argument to derive (2.9) in the original
theorem gives

‖xS`‖2 6
√
s1

s1 − ‖ω1‖2∞
∥∥xS`−1∥∥ω1,1 6 4

√
s1

∥∥xS`−1∥∥ω1,1
‖eT`‖2 6

√
s2

s2 − ‖ω2‖2∞
∥∥eT`−1∥∥ω2,1 6 2

√
s2

∥∥eT`−1∥∥ω1,1,
(4.25)

where we have used our assumptions relating ‖ωi‖2∞ and si.
Applying the 2-level ω-RIP on vS∪T + vS1∪T1 gives

(4.26)

‖vS∪T + vS1∪T1‖
2
2 6

1

1− δω,2s
‖B(vS∪T + vS1∪T1)‖

2
2

=
1

1− δω,2s
〈B(vS∪T + vS1∪T1), Bv−

∑
`>2

BvS`∪T`〉

6

√
1+ δω,2s
1− δω,2s

‖vS∪T + vS1∪T1‖2‖Bv‖2

+
1

1− δω,2s

∑
`>2

|〈B(vS∪T + vS1∪T1), BvS`∪T`〉|,

where the last inequality follows by Cauchy-Schwarz and a second application of the 2-level ω-
RIP. Using the fact that S, S1, S` and T, T1, T` are each collections of mutually disjoint index sets
for ` > 2 and therefore respective restrictions of x and e on these sets are orthogonal, rewriting
S ′ = S ∪ S1 ∪ S` and T ′ = T ∪ T1 ∪ T`,

|〈B(vS∪T + vS1∪T1), BvS`∪T`〉| = |〈B∗S ′∪T ′BS ′∪T ′(vS∪T + vS1∪T2), vS`∪T`〉+ 〈vS∪T + vS1∪T1 , vS`∪T`〉|
= |〈(B∗S ′∪T ′BS ′∪T ′ − I)(vS∪T + vS1∪T2), vS`∪T`〉|
6 δω,3s‖vS∪T + vS1∪T1‖2‖vS`∪T`‖2.
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Splitting vS`∪T` = [xS` ; eT` ] and using (4.25), we find

‖vS`∪T`‖2 6 ‖xS`‖2 + ‖eT`‖2

6
4
√
s1

∥∥xS`−1∥∥ω1,1 + 2
√
s2

∥∥eT`−1∥∥ω2,1
6

4

min
{√
s1, λ
√
s2
}∥∥xS`−1 ; eT`−1∥∥ωλ,1

=
4

min
{√
s1, λ
√
s2
}∥∥vS`−1∪T`−1∥∥ωλ,1,

giving

|〈B(vS∪T + vS1∪T1), BvS`∪T`〉| 6
4δω,3s

min
{√
s1, λ
√
s2
}‖vS∪T + vS1∪T1‖2

∥∥vS`−1∪T`−1∥∥ωλ,1.
Combining with (4.26) and dividing by ‖vS∪T + vS1∪T1‖2 gives

‖vS∪T‖2 6 ‖vS∪T + vS1∪T1‖2

6

√
1+ δω,3s
1− δω,3s

‖Bv‖2 +
4δω,3s

(1− δω,3s)min
{√
s1, λ
√
s2
}∑
`>2

∥∥vS`−1∪T`−1∥∥ωλ,1
=

√
1+ δω,3s
1− δω,3s

‖Bv‖2 +
4δω,3sΘ

(1− δω,3s)
√
sλ

∥∥∥v(S∪T)C∥∥∥
ωλ,1

.

Thus, B satisfies the 2-level weighted robust null space property of scale λ and order s with the
discussed constants, so long as

4δω3sΘ

1− δω,3s
< 1,

which is satisfied precisely when δω,3s < 1/(1+ 4Θ) as desired. �

Theorem 4.8 ([1], Theorem 5.23, cf. Theorems 2.8 and 4.2). Fix δ, γ ∈ (0, 1), and let (φν)ν∈Λ0
be the tensorized Chebyshev or Legendre basis on the hyperbolic cross index set. Take the
intrinsic weight sequence ω1,ν = ‖φν‖∞, let ω2 be arbitrary, and take

K & S(s1)max
{
L(s1,M, δ, γ), δ

−2s2
}

i.i.d. sampling points {Z(k)}Kk=1 drawn from the orthogonalization measure π dz of the ba-
sis, where L(s,M, δ, γ) is the polylogarithmic factor (4.7). With probability exceeding 1 − γ,
B = [Ã, I] ∈ CK,M+K with Ã ∈ CK,M the normalized sampling matrix with entries Ãk,ν =
1√
K
φν(Z

(k)) has 2-level ω-RIP constant of order s = (S(s1), s2) satisfying δω,s 6 δ.

Proof. As in [2], we first relate Ã having the ω1-RIP of order S(s1) to B having the 2-level
ω-RIP of order S(s1). Suppose that v = [x; e], ‖x‖ω1,0 6 S(s1), and ‖e‖ω2,0 6 s2. We wish to
calculate an upper bound on all δω,s such that

(1− δω,s)‖v‖22 6 ‖Bv‖
2
2 6 (1+ δω,s)‖v‖22,

which by the structure of B and v is equivalent to the condition that

(1− δω,s)(‖x‖22 + ‖e‖
2
2) 6

∥∥Ãx+ e∥∥2
2
6 (1+ δω,s)(‖x‖22 + ‖e‖

2
2).

We consider

(4.27)
∥∥Ãx+ e∥∥2

2
=
∥∥Ãx∥∥2

2
+ ‖e‖22 + 2Re〈Ãx, e〉.
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The first term can be handled by the fact that Ã will have the ω-RIP of order S(s2), and the
second term is needs no modification. Thus, it suffices to provide upper and lower bounds on the
cross term. To start, we have

−2
∣∣〈Ãx, e〉∣∣ 6 2Re〈Ãx, e〉 6 2∣∣〈Ãx, e〉∣∣.

Based on our choice of intrinsic weights, we see

2
∣∣〈Ãx, e〉∣∣ 6 2∥∥Ãx∥∥∞‖e‖1

6 2
1√
K

∑
ν∈Λ0

‖φν‖∞|xν|
 ‖e‖1

6 2
1√
K
‖x‖ω1,1‖e‖ω2,1

6

√
S(s1)s2
K

2‖x‖2‖e‖2.

To combine this with the terms involving sums of ‖x‖22 and ‖e‖22, we apply Cauchy’s inequality
(after multiplying and dividing by some

√
ε to be determined), calculating

2
∣∣〈Ãx, e〉∣∣ 6√S(s1)s2

K

(
‖x‖22
ε

+ ε‖e‖22

)

=: D

(
‖x‖22
ε

+ ε‖e‖22

)
.

Assuming that δω1,S(s1) 6 δ, applying the previous bound and the ω1-RIP to
∥∥Ãx∥∥2

2
in (4.27),

we find

(1− δ−D/ε)‖x‖22 + (1−Dε)‖e‖22 6
∥∥Ãx+ e∥∥2

2
6 (1+ δ+D/ε)‖x‖22 + (1+Dε)‖e‖22.

We now choose ε so that δ+D/ε = Dε =: δ̃, which gives

ε =
δ+
√
δ2 − 4D2

2D
, δ̃ =

δ+
√
δ− 4D2

2
6 δ

so long as δ > 2D. Thus, B = [Ã, I] satisfies the 2-level weighted RIP of order s with δω,s 6 δ.
We now ensure that our measurements are chosen correctly to meet our assumptions made

throughout the proof. In particular, if we choose K & S(s1)L, with probability exceeding 1− γ, we
have our previous assumption that δω1,S(s1) 6 δ by Theorem 4.2 and the fact that the lower RIP
of order s1 is equivalent to the weighted RIP of order S(s1). We just need then that δ > 2D which
is satisfied when

δ > 2

√
S(s1)s2
K

which is equivalent to K & S(s1)δ
−2s2.

Thus, the specified number of measurements in the theorem suffice to show that B has 2-level
weighted RIP constant bounded by δ. �

We finally provide the recovery estimates for generalized WLAD-LASSO minimization.

Theorem 4.9 ([1], Theorem 5.25). Let 0 < γ < 1, 2 6 s 6 2N+1, and Λ0 = ΛHC(s) with
{φν}ν∈Λ0 tensor Legendre or Chebyshev polynomial bases. Additionally, suppose that

δ 6
1

1+ 4Θ
, Θ =

√
S(s) + λ2H

min
{√

S(s), λ
√
H
} .
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If we draw

K & sκmax
{
L(s, n, δ, γ), δ−2H

}
i.i.d. measurements {Z(k)}Kk=1 from the orthogonalization measure π dz for κ as in (4.8) and
L as in (4.7), then with probability 1 − γ, the following holds. Letting û] be the solution of
the generalized WLAD-LASSO minimization problem

(4.28) û] = arg min
z∈Cn

‖z‖ω1,1 + λ
∥∥Ãz− ỹ∥∥

ω2,1
,

defining u] =
∑
ν∈Λ0 û

]
νφν, if ‖ω2‖2∞ 6 1

2H,∥∥u− u]
∥∥∞ + λ

∥∥e− (ỹ− Ãû])
∥∥
ω2,1

. σL,s(u)ω1,1 + λσH(e)ω2,1,∥∥u− u]
∥∥
2
+
∥∥e− (ỹ− Ãû])

∥∥
2
. (1+

√
Θ)

(
σL,s(u)ω1,1

sκ/2
+
σH(e)ω2,1√

H

)
+ ‖uΛR‖2

where all constants depend on δ.

Proof. We first rewrite (4.28) as the constrained problem

(û], e]) = arg min
(z,d)∈CM×CK

‖z‖ω1,1 + λ‖d‖ω2,1 = arg min
x=[z;d]∈CM+K

‖x‖ωλ,1 such that ỹ− Ãz = d.

By the fact that S(s) 6 sκ, the given number of measurements and Theorem 4.8 implies that with
probability exceeding 1−γ, B = [Ã, I] satisfies the 2-level weighted RIP with RIP constant bounded
so that by Theorem 4.7, B has the 2-level weighted robust null space property of scale λ and order
(S(s), H). Here we have also used our assumption that 12H > ‖ω2‖

2∞ and Lemma 4.1 to give
that 34s1 > ‖ω1‖

2∞. We finally apply the distance bounds from Lemma 4.5 with x = [ûΛ0 ; e] and
z = [û]; e]]. Note that by our restated formulation of the WLAD-LASSO minimization program
and the definition of e, since Bx = ÃûΛ0 + e = ỹ = Ãû] + e] = Bz, we must have B(x− z) = 0.

For the L∞ bound, we use the 2-level `1 distance bound (4.21) which implies∥∥u− u]
∥∥∞ + λ

∥∥e− (ỹ− Ãû])
∥∥
ω2,1

6
∥∥ûΛ0 − u]∥∥ω1,1 + λ∥∥e− e]∥∥ω2,1 + ‖ûΛR‖ω1,1

= ‖x− z‖ωλ,1 + ‖ûΛR‖ω1,1
. σ(S(s),H)(x)ωλ,1 + ‖ûΛR‖ω1,1,

since [û]; e]] minimizes ‖z‖ωλ,1. By definition,

σ(S(s),H)(x)ωλ,1 = σS(s)(ûΛ0)ω1,1 + λσH(e)ω2,1.

As before, since the first term is defined taking the infimum over approximations of ûΛ0 supported
on index sets S with ω1(S) 6 S(s), this set includes all cardinality s lower sets by the definition of
intrinsic sparsity. Thus, the error in the best s-term approximation to ûΛ0 in lower sets can only
be larger as it the infimum over a smaller feasible set. Additionally, as before, since Λ0 contains all
lower sets, the error in the best s-term approximation to ûΛ0 in lower sets must contain ‖ûΛR‖ω1,1.
And finally, σL,s(ûΛ0)ω1,1 = σL,s(û)ω1,1, since the best approximation to û on a lower set must
be supported in Λ0. Combining these facts gives∥∥u− u]

∥∥∞ + λ
∥∥e− (ỹ− Ãû])

∥∥
ω2,1

. σL,s(u)ω1,1 + λσH(e)ω2,1

as desired.
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For the L2 error, we use Parseval’s identity, the `2 bound (4.22) and the lower bound on the
intrinsic sparsity in Lemma 4.3 giving∥∥u− u]

∥∥
2
+
∥∥e− (ỹ− Ãû])

∥∥
2
6
∥∥ûΛ0 − u]∥∥2 + ∥∥e− e]∥∥2 + ‖uΛR‖2

6
√
2‖x− z‖2 + ‖uΛR‖2

. (1+
√
Θ)
σ(S(s),H)(x)ωλ,1√

S(s) + λ2H
+ ‖uΛR‖2

. (1+
√
Θ)

(
σL,s(u)ω1,1√
S(s) + λ2H

+ λ
σH(e)ω2,1√
S(s) + λ2H

)
+ ‖uΛR‖2

. (1+
√
Θ)

(
σL,s(u)ω1,1√

S(s)
+
σH(e)ω2,1√

H

)
+ ‖uΛR‖2

. (1+
√
Θ)

(
σL,s(u)ω1,1

sκ/2
+
σH(e)ω2,1√

H

)
+ ‖uΛR‖2

as desired. �

Remark 4.2. Let us consider the conclusions of Theorem 4.9 for the case of our original
WLAD-LASSO program (4.14). In this case, we must take our weights on the error terms
to be one. Thus, for any H > 2, ‖ω2‖2∞ 6 1

2H and Theorem 4.9 applies to give the error
estimates ∥∥u− u]

∥∥∞ . σL,s(u)ω1,1 + λσH(e)1,∥∥u− u]
∥∥
2
. (1+

√
Θ)

(
σL,s(u)ω1,1

sκ/2
+
σH(e)1√

H

)
+ ‖uΛR‖2

for Θ =
√

S(s) + λ2H/min
{√

S(s), λ
√
H
}
. Choosing λ =

√
S(s)/

√
H gives Θ =

√
2, removing

this factor from the error bound.
In contrast to the other three minimization methods, our dependence on ‖e‖2 in the

error bounds has been replaced with σH(e)1 in the WLAD-LASSO case. When the total
measurement error fits our assumed decomposition of e = ebounded + esparse with H chosen to
match the sparsity of esparse, we may rewrite

σH(e)1 6 ‖e− esparse‖1 =
∥∥ebounded∥∥

1
6
√
K
∥∥ebounded∥∥

2
.

In the case that we choose K � sκmax{L,H} and λ � sκ/2/
√
H, we have

√
K/H . sκ/2 and

therefore ∥∥u− u]
∥∥∞ . σL,s(u)ω1,1 + sκ∥∥ebounded∥∥2∥∥u− u]

∥∥
2
.
σL,s(u)ω1,1

sκ/2
+ sκ/2

∥∥ebounded∥∥
2
+ ‖uΛR‖2.

This matches the error bounds of the other three methods up to a factor of sκ/2 on the∥∥ebounded∥∥
2
term, however, the WLAD-LASSO minimization removes any dependence on

arbitrarily large, sparse error as well. We note though that for these bounds to hold, the tuning
parameter λ still requires some information of the error unlike WSR-LASSO minimization.
Rather than needing information on the norm of the error as in the WQCBP and WLASSO
however, only the sparsity of esparse is required.
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