
Math 828 Homework 1 Solutions 9/6/2023

Exercises: (Chapter 1.1-2)

1. Consider f : R→ R defined by

f(t) =

{
1
n if t = m

n with m ∈ Z, n ∈ N sharing no common factors

0 if t ∈ R \Q
.

(a) Show that f is discontinuous at every t ∈ Q.

(b) Show that f is continuous at every t ∈ R \Q.

(c) Show that 1Q is discontinuous at every t ∈ R.

2. Show that if E ⊂ R is countable then E is a null set.

3. Let X be a set and let (En)n∈N be a sequence of subsets. Recall that the limit inferior and limit
superior of this sequence of sets are defined as

lim inf En :=

∞⋃
n=1

∞⋂
k=n

Ek and lim supEn :=
∞⋂
n=1

∞⋃
k=n

Ek,

respectively. Show that for all x ∈ X,

1lim inf En(x) = lim inf
n→∞

1En(x) and 1lim supEn(x) = lim sup
n→∞

1En(x).

4. Let X be an uncountable set. Show that

C := {E ⊂ X : E or Ec is countable}

is a σ-algebra on X.

5. Let BR be the Borel σ-algebra on R, and consider the following collections of subsets of R:

E1 := {(a, b) : a, b ∈ R, a < b}
E2 := {[a,∞) : a ∈ R}.

Show that M(E1) =M(E2) = BR.

———————————————————————————————————————————–

Solutions:

1. (a) Fix t = m
n ∈ Q and let ε := 1

n . For any δ > 0, the density of the irrationals implies there exists
s ∈ (t− δ, t+ δ) \Q. Hence |t− s| < δ, but

|f(t)− f(s)| = 1

n
= ε.

Hence f is discontinuous at t. �

(b) Fix t ∈ R \Q and let ε > 0. Let M ∈ N satisfy M ≥ 1
ε . Note that for each m ∈ {1, . . . ,M}, there

are only finitely many n ∈ Z satisfying n
m ∈ [t−1, t+1] (since this requires m(t−1) ≤ n ≤ m(t+1)).

Thus the following is a finite set:

F :=
{ n
m
∈ [t− 1, t+ 1] | 1 ≤ m ≤M, n ∈ Z

}
.

Since F ⊂ Q, we know t 6∈ F and therefore

δ := min
s∈F
|t− s| > 0.
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Note that δ < 1 since there exists n ∈ Z ∩ F with n ≤ t < n+ 1.

Now, we claim that if s ∈ R satisfies |t− s| < δ, then |f(t)−f(s)| < ε. Since f(t) = 0, if s ∈ R\Q
then |f(t)− f(s)| = |0− 0| = 0 < ε. So now assume s ∈ Q, and say s = n

m for n ∈ Z and m ∈ N
with no common factors. If m > M , then we have

|f(t)− f(s)| = |0− 1

m
| = 1

m
<

1

M
≤ ε,

as needed. If m ≤ M , then since δ < 1 we have s ∈ [t − 1, t + 1] and hence s ∈ F . But then
|t− s| < δ ≤ |t− s| is a contradiction. Thus we cannot have m ≤ M and so in all cases we have
have shown |f(t)− f(s)| < ε. �

(c) Fix t ∈ R and let ε = 1. Since both Q and R \ Q are dense in R, for any δ > 0 we can find
s ∈ (t− δ, t+ δ) that is either rational if t is irrational or irrational if t is rational. In either case
we have |t− s| < δ while

|f(t)− f(s)| = 1 = ε.

Hence f is discontinuous at t. �

2. Let ε > 0 and let E = {tn : n ∈ N} be an enumeration of E. For each n ∈ N, define

an := tn −
ε

2n+1
bn := tn +

ε

2n+1

so that tn ∈ (an, bn) and bn − an = 2ε
2n+1 = ε

2n . Then

E ⊂
⋃
n∈N

(an, bn)

and
∞∑
n=1

bn − an =

∞∑
n=1

ε

2n
= ε

∞∑
n=1

2−n = ε.

Thus E is a null set. �

3. First suppose x ∈ lim inf En. By definition, this means there exists n0 ≥ 1 so that x ∈
⋂∞
k=n0

Ek.
Consequently, 1Ek

(x) = 1 for all k ≥ n0. Hence

lim inf
n→∞

1En
(x) = sup

n∈N
inf
k≥n

1Ek
(x) ≥ inf

k≥n0

1Ek
(x) = 1.

Since 1En
(x) ≤ 1 for all n, it follows that lim inf 1En

(x) = 1 = 1lim inf En
(x). Next, suppose x 6∈

lim inf En. Again by definition we have for all n ≥ 1 that x 6∈
⋂∞
k=nEk; that is, for all n ≥ 1 there

exists k(n) ≥ n so that x 6∈ Ek(n). Thus

lim inf
n→∞

1En(x) = sup
n∈N

inf
k≥n

1Ek
(x) ≤ sup

n∈N
1Ek(n)

(x) = 0.

Since 1En(x) ≥ 0 for all n, it follows that lim inf 1En(x) = 0 = 1lim inf En(x). This establishes the first
equality.

To prove the second equality, one can proceed among more or less the same lines as above. Alternatively,
observe that

(lim supEn)c =

∞⋃
n=1

∞⋂
k=n

Eck = lim inf Ecn,

and so
1− 1lim supEn

(x) = 1(lim supEn)c(x) = 1lim inf Ec
n
(x) = lim inf

n→∞
1Ec

n
(x)

by the first part of the proof. Hence

1lim supEn
(x) = 1− lim inf

n→∞
1Ec

n
(x) = lim sup

n→∞
(1− 1Ec

n
(x) = lim sup

n→∞
1En

(x).

�
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4. First observe that C is nonempty since Xc = ∅ implies X ∈ C. Since the definition of C is symmetric
with respect to E and Ec, it follows that C is closed under taking complements. Finally, suppose
E1, E2, . . . ∈ C. If each En is countable, then so is their union and hence

∞⋃
n=1

En ∈ C.

Otherwise, at least one En is not countable and therefore Ecn must be countable. But then( ∞⋃
n=1

En

)c
=

∞⋂
n=1

Ecn ⊂ Ecn,

and so the complement of the union is countable. Hence the union belongs to C, which is therefore a
σ-algebra. �

5. We will use Lemma 1.1 to show the inclusions

M(E1) ⊂M(E2) ⊂ BR ⊂M(E1).

Since σ-algebras are closed under complements, we have (−∞, a) ⊂ M(E2) for all a ∈ R. Since
σ-algebras are also closed under countable intersections, we have

[a, b) = [a,∞) ∩ (−∞, b) ∈M(E2)

for all a < b. Observe that

(a, b) =

∞⋃
n=1

[a+
1

n
, b).

Indeed, the union is clearly contained in the interval, and if a < x < b then there exists a sufficiently
large n ∈ N so that a+ 1

n ≤ x. Thus we have E1 ⊂M(E2) since σ-algebras are closed under countable
unions. Lemma 1.1 then gives the first of our claimed inclusions.

Next, we note that BR contains all closed subsets of R since it contains all open subsets and is closed
under taking complements. Consequently, E2 ⊂ BR and Lemma 1.1 yields the second of our claimed
inclusions.

Finally, we claim every open subset U ⊂ R is a countable union of open intervals, in which case
U ∈ M(E1). Since BR is the σ-algebra generated by the open subsets of R, Lemma 1.1 will give us
the last of our claimed inclusions. Indeed, for every x ∈ U there exists an open interval satisfying
x ∈ (ax, bx) ⊂ U . Enumerate Q ∩ U = {qn : n ∈ N}. The density of the rationals implies each (ax, bx)
contains at least one rational number (in fact they will all contain an infinite number of them), and so

U =
⋃
x∈U

(ax, bx) =

∞⋃
n=1

⋃
x : (ax,bx)3qn

(ax, bx)

For each n ∈ N, denote

Un :=
⋃

x : (ax,bx)3qn

(ax, bx).

Then Un is open as a union of open sets, and is connected as the union of connected sets with a common
point (namely qn). Therefore Un = (an, bn) is an interval, and U is a countable union of intervals. �
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