Math 828 Homework 8 Solutions 11/8/2023

Exercises: (Sections 3.1, 3.2)

1. Let v be a signed measure on a measurable space (X, M).

(a) Show L'(X,v) = L'(X, |v|).
(b) For f € LY(X,v), show | [ f dv| < [ |f] d|v].
(¢) For E € M, prove the following formulas:
(i) v*(E) =sup{v(F): F C E,F € M}
(ii) v~ (F) = —inf{v(F): FC E,F € M}
(iii) assuming v is o-finite, |[v|(E) = sup{| [ f dv|: f € L'(X,v) and |f]| < 1}
(iv) [V|(E) =sup{|v(E1)|+ -+ |v(Ey)|:neN, E=E,U---UE, is a partition}

2. Let (vn)nen be a sequence of positive measures and let p be a positive measure, all defined on the

same measurable space (X, M). Denote v =" | v,.

(a) Show that if v, L p for all n € N, then v L p.
(b) Show that if v, < p for all n € N, then v < p.
3. For j = 1,2, let p;, v; be o-finite measures on (X;, M;) with v; < p;. Show that 11 X vo < f11 X po

with
dl/g

d(l/1 X 1/2) avy
dpiz

d(p1 % pi2)
for (u1 x pe2)-almost every (z1,z2) € X7 X Xo.

vy

dpy (@)

(z2)

(z1,22) =

4. On ([0,1], By,11), let m be the Lebesgue measure and let v be the counting measure.

(a) Show that m < v, but dm # f dv for any function f.
(b) Show that there does not exist A L m and p < m so that v = X + p.

[Note: this shows the o-finiteness assumption in the Lebesgue-Radon—-Nikodym theorem is necessary.]

5. Let (X, M, pu) be a o-finite measure space, and let v be a o-finite signed measure on (X, M) with
v < p.

— 4

(a) Show that =T

dv
dp
(b) Show that j—l’; € LY(X, p) if and only if v is finite.

(¢) Suppose v is positive and let A := v + p. Show that 0 < % < 1 p-almost everywhere and that

dv

v _ &
- dv *

dp -5

Solutions:
1. (a) By definition L'(X,v) = LY(X,vT) N LY(X,v™). So for f € L}(X,v) we have

Jourrawi= [ irat+ [ ia <o,

and so f € L'(X,|v]). Conversely, if f € L'(X,|v|), then

Jourta+ [ iar = [ i1y < o

implies f € LY(X,vT)NLY(X,v™) = L}(X,v). O
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(b) Using Proposition 2.22 we have

‘/dez/

‘/}(fdy*/xfdl/
g‘/xfdu++‘/xfdu
< [itavt+ [ = [ iriaw

(¢c) Let X = PUN be a partition so that P and N are positive and negative for v, respectively.

(i) We have vt (FE) = v(E N P) and so v*(F) is bounded above by the supremum. Conversely,
for measurable F' C E, we have v(F) = v (F) — v~ (F) <vT(F) <vt(E).

(ii) We have v~ (E) = —v(E N N) and so v~ (F) is bounded above by the negative infimum.
Conversely, for measurable F' C E, we have —v(F) = —vT(F)+ v~ (F) <v™ (F) <v~ (E).

(iii) Using part (b), if |f| < 1 then | [, f dv| < [.|f| dlv| < |[v[(E). So |v|(E) is bounds
the supremum above. On the other hand, recall v being o-finite means |v| is o-finite and
so we have X = (J;2, F,, with |[v|(F),) < oo and F,, C F,4; for each n € N. Consider
fn :=1pnr, — InnF,, which satisfies

[ 1tal vl = [ 1, did = pl(R) < oc.
X X

Thus f, € L*(X,|v]), and hence f, € L'(X,v) by part (a). Now, f, = lpng, v-a.e. and

f=—1nnF, v -a.e. and therefore
/fn duf/fn dv™ /fn dv™ :/1Pan du++/1Nan dv™
E
HENPNE)+v (ENNNE,)=vH(ENE,)+v (ENF,)=[v[(ENF,).

Since the F,,’s increase to X, taking supremum of the above quantity over n € N yields |v|(F)
by continuity from below.

(iv) For any partition E = Fy U---U E,,, we have
W(ED|+ -+ [p(En)| < (B + - + [VI(En) = [V[(Br U--- U Ey) = [V[(E).

Hence |v|(E) bounds the supremum above. Conversely, let X = P U N be a Hahn decompo-
sition for v. Then

V|(E) = v (E) + v (E) = [v(ENP)| + [V(ENN)|,
and so |v|(F) is bounded by the supremum. O
2. (a) For each n € N, let X = E,, U F,, be a partition such that E,, is v,-null and F), is p-null. Define

= ﬁ E, and F .= [j F,
n=1 n=1
Then - -
=JE;=F.=F
n=1 n=1

so that X = F LU F is a partition. Additionally, F' is p-null as the countable union of p-null sets.
Finallly, F C E, so that E is v,-null for all n € N. Consequently,

E):Z:lyn(E)zz_:lozo.

That is, F is v-null and therefore v 1 pu. (]
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(b) Let E € M be p-null. By assumption it is v,-null for all n € N, and hence

[e.9]

=Y wm(E)=) 0=

Thus v < p. ]

3. Let £ € M; ® My. Then Tonelli’s theorem (applied twice) and Exercise 3 on Homework 5 imply

diry dvy dvy
v1 X vo)(E 1 d(vy @ vo) //1 dvydy //1 d /——d .
( 1 2)( ) / E 1 2 E al1avy = E5— Mldﬂg dpin dpss M2)

Thus if (11 X p2)(F) = 0, then the above equals zero and so v1 X Vo < 1 X pa. The same computation
shows the claimed equality by the uniqueness in the Lebesgue-Radon—Nikodym theorem. |

4. (a) If v(E) = 0, then necessarily £ = @) and so u(F) = 0. Hence m < v. Suppose, towards a
contradiction, that dm = fdv for some f. Then for each t € R

= m({t}) = /{ =10

Hence f =0, but then m([0,1]) =1#0= f[o 1 f dv, a contradiction. O

(b) Suppose towards a contradiction that v = A+ p for A L p and p < m. Let [0,1] = EUF
where F is A-null and F is m-null (and hence p-null). For each t € [0,1], p({t}) = 0 and so
A({t}) = v({t}) =1 > 0. Thus we must have {t} C F for each ¢t € [0, 1] and therefore F' = [0, 1].
But this set is not m-null. ]

5. (a) We have g—” = % - d;—;, and % > 0 since vt are positive. Let X = P U N be a Hahn

decompomtlon for v. Then

dv—
—dpy=v (P)=0,
m ~(P)
and so dcll/,l: () = 0 for p-almost every z € P by Proposition 2.16. Similarly %(az) = 0 for
p-almost every x € N. Hence % = %11: and dd”—l; = dd”—l:hv and since PN N = () we have
dlliﬂ _dv” 7dl/+1 +dy71 _dvt dv— _dy|
du|  ldp P dp N T e T an N T du dpu — dp’
O
(b) By part (a),
d|l/|
USE = [ |5
Thus |v[(X) < oo (i.e. v is finite) iff d—” € Ll(X 1). O
(c) We have 9 > 0 since v is positive. Observe that for E = {z € X: % (2) > 1} we have
dv
0< | 1——d\=XE)—-v(E)=puE).
B dA
Thus p(E) =0 and so Z—Z < 1 p-almost everywhere. Now, Theorem 3.10 implies
dv _dvdp _dvd—v) _dv (| dv
d\ dpd\  dp  d\ du dA

Solving for Z—Z yields the claimed equality. O
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